Apache Kafka and the four challenges of production machine learning systems

@machinelearnbot

To learn more about cutting-edge data science tools like Apache Kafka, check out the Strata Data Conference in San Jose, March 5-8, 2018--registration is now open. Machine learning has become mainstream, and suddenly businesses everywhere are looking to build systems that use it to optimize aspects of their product, processes or customer experience. The cartoon version of machine learning sounds quite easy: you feed in training data made up of examples of good and bad outcomes, and the computer automatically learns from these and spits out a model that can make similar predictions on new data not seen before. What could be easier, right? Those with real experience building and deploying production systems built around machine learning know that, in fact, these systems are shockingly hard to build. This difficulty is not, for the most part, the algorithmic or mathematical complexities of machine learning algorithms. Creating such algorithms is difficult, to be sure, but the algorithm creation process is mostly done by academic researchers.


Apache Kafka and the four challenges of production machine learning systems

#artificialintelligence

Machine learning has become mainstream, and suddenly businesses everywhere are looking to build systems that use it to optimize aspects of their product, processes or customer experience.


Build and Deploy Scalable Machine Learning in Production with Kafka - DZone AI

#artificialintelligence

Intelligent real time applications are a game changer in any industry. Machine learning and its sub-topic, deep learning, are gaining momentum because machine learning allows computers to find hidden insights without being explicitly programmed where to look. This capability is needed for analyzing unstructured data, image recognition, speech recognition, and intelligent decision making. It is an important difference from traditional programming with Java, .NET, or Python. While the concepts behind machine learning are not new, the availability of big data sets and processing power allow every enterprise to build powerful analytic models.


Machine Learning With Python, Jupyter, KSQL, and TensorFlow - DZone AI

#artificialintelligence

Uber expanded Michelangelo "to serve any kind of Python model from any source to support other Machine Learning and Deep Learning frameworks like PyTorch and TensorFlow [instead of just using Spark for everything]." So why did Uber (and many other tech companies) build its own platform and framework-independent machine learning infrastructure? The posts How to Build and Deploy Scalable Machine Learning in Production with Apache Kafka and Using Apache Kafka to Drive Cutting-Edge Machine Learning describe the benefits of leveraging the Apache Kafka ecosystem as a central, scalable, and mission-critical nervous system. It allows real-time data ingestion, processing, model deployment, and monitoring in a reliable and scalable way. This post focuses on how the Kafka ecosystem can help solve the impedance mismatch between data scientists, data engineers, and production engineers. By leveraging it to build your own scalable machine learning infrastructure and also make your data scientists happy, you can solve the same problems for which Uber built its own ML platform, Michelangelo. Based on what I've seen in the field, an impedance mismatch between data scientists, data engineers, and production engineers is the main reason why companies struggle to bring analytic models into production to add business value.


How to Deploy Machine Learning Models

#artificialintelligence

The deployment of machine learning models is the process for making your models available in production environments, where they can provide predictions to other software systems. It is only once models are deployed to production that they start adding value, making deployment a crucial step. However, there is complexity in the deployment of machine learning models. This post aims to at the very least make you aware of where this complexity comes from, and I'm also hoping it will provide you with useful tools and heuristics to combat this complexity. If it's code, step-by-step tutorials and example projects you are looking for, you might be interested in the Udemy Course "Deployment of Machine Learning Models".