Collaborating Authors

Detecting socially interacting groups using f-formation: A survey of taxonomy, methods, datasets, applications, challenges, and future research directions Artificial Intelligence

Robots in our daily surroundings are increasing day by day. Their usability and acceptability largely depend on their explicit and implicit interaction capability with fellow human beings. As a result, social behavior is one of the most sought-after qualities that a robot can possess. However, there is no specific aspect and/or feature that defines socially acceptable behavior and it largely depends on the situation, application, and society. In this article, we investigate one such social behavior for collocated robots. Imagine a group of people is interacting with each other and we want to join the group. We as human beings do it in a socially acceptable manner, i.e., within the group, we do position ourselves in such a way that we can participate in the group activity without disturbing/obstructing anybody. To possess such a quality, first, a robot needs to determine the formation of the group and then determine a position for itself, which we humans do implicitly. The theory of f-formation can be utilized for this purpose. As the types of formations can be very diverse, detecting the social groups is not a trivial task. In this article, we provide a comprehensive survey of the existing work on social interaction and group detection using f-formation for robotics and other applications. We also put forward a novel holistic survey framework combining all the possible concerns and modules relevant to this problem. We define taxonomies based on methods, camera views, datasets, detection capabilities and scale, evaluation approaches, and application areas. We discuss certain open challenges and limitations in current literature along with possible future research directions based on this framework. In particular, we discuss the existing methods/techniques and their relative merits and demerits, applications, and provide a set of unsolved but relevant problems in this domain.

Lio -- A Personal Robot Assistant for Human-Robot Interaction and Care Applications Artificial Intelligence

Lio is a mobile robot platform with a multi-functional arm explicitly designed for human-robot interaction and personal care assistant tasks. The robot has already been deployed in several health care facilities, where it is functioning autonomously, assisting staff and patients on an everyday basis. Lio is intrinsically safe by having full coverage in soft artificial-leather material as well as having collision detection, limited speed and forces. Furthermore, the robot has a compliant motion controller. A combination of visual, audio, laser, ultrasound and mechanical sensors are used for safe navigation and environment understanding. The ROS-enabled setup allows researchers to access raw sensor data as well as have direct control of the robot. The friendly appearance of Lio has resulted in the robot being well accepted by health care staff and patients. Fully autonomous operation is made possible by a flexible decision engine, autonomous navigation and automatic recharging. Combined with time-scheduled task triggers, this allows Lio to operate throughout the day, with a battery life of up to 8 hours and recharging during idle times. A combination of powerful on-board computing units provides enough processing power to deploy artificial intelligence and deep learning-based solutions on-board the robot without the need to send any sensitive data to cloud services, guaranteeing compliance with privacy requirements. During the COVID-19 pandemic, Lio was rapidly adjusted to perform additional functionality like disinfection and remote elevated body temperature detection. It complies with ISO13482 - Safety requirements for personal care robots, meaning it can be directly tested and deployed in care facilities.

Following Social Groups: Socially Compliant Autonomous Navigation in Dense Crowds Artificial Intelligence

In densely populated environments, socially compliant navigation is critical for autonomous robots as driving close to people is unavoidable. This manner of social navigation is challenging given the constraints of human comfort and social rules. Traditional methods based on hand-craft cost functions to achieve this task have difficulties to operate in the complex real world. Other learning-based approaches fail to address the naturalness aspect from the perspective of collective formation behaviors. We present an autonomous navigation system capable of operating in dense crowds and utilizing information of social groups. The underlying system incorporates a deep neural network to track social groups and join the flow of a social group in facilitating the navigation. A collision avoidance layer in the system further ensures navigation safety. In experiments, our method generates socially compliant behaviors as state-of-the-art methods. More importantly, the system is capable of navigating safely in a densely populated area (10+ people in a 10m x 20m area) following crowd flows to reach the goal.

Target Reaching Behaviour for Unfreezing the Robot in a Semi-Static and Crowded Environment Artificial Intelligence

Robot navigation in human semi-static and crowded environments can lead to the freezing problem, where the robot can not move due to the presence of humans standing on its path and no other path is available. Classical approaches of robot navigation do not provide a solution for this problem. In such situations, the robot could interact with the humans in order to clear its path instead of considering them as unanimated obstacles. In this work, we propose a robot behavior for a wheeled humanoid robot that complains with social norms for clearing its path when the robot is frozen due to the presence of humans. The behavior consists of two modules: 1) A detection module, which make use of the Yolo v3 algorithm trained to detect human hands and human arms. 2) A gesture module, which make use of a policy trained in simulation using the Proximal Policy Optimization algorithm. Orchestration of the two models is done using the ROS framework.

A New Paradigm of Threats in Robotics Behaviors Artificial Intelligence

Robots applications in our daily life increase at an unprecedented pace. As robots will soon operate "out in the wild", we must identify the safety and security vulnerabilities they will face. Robotics researchers and manufacturers focus their attention on new, cheaper, and more reliable applications. Still, they often disregard the operability in adversarial environments where a trusted or untrusted user can jeopardize or even alter the robot's task. In this paper, we identify a new paradigm of security threats in the next generation of robots. These threats fall beyond the known hardware or network-based ones, and we must find new solutions to address them. These new threats include malicious use of the robot's privileged access, tampering with the robot sensors system, and tricking the robot's deliberation into harmful behaviors. We provide a taxonomy of attacks that exploit these vulnerabilities with realistic examples, and we outline effective countermeasures to prevent better, detect, and mitigate them.