Collaborating Authors

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.

On effective human robot interaction based on recognition and association Artificial Intelligence

Faces play a magnificent role in human robot interaction, as they do in our daily life. The inherent ability of the human mind facilitates us to recognize a person by exploiting various challenges such as bad illumination, occlusions, pose variation etc. which are involved in face recognition. But it is a very complex task in nature to identify a human face by humanoid robots. The recent literatures on face biometric recognition are extremely rich in its application on structured environment for solving human identification problem. But the application of face biometric on mobile robotics is limited for its inability to produce accurate identification in uneven circumstances. The existing face recognition problem has been tackled with our proposed component based fragmented face recognition framework. The proposed framework uses only a subset of the full face such as eyes, nose and mouth to recognize a person. It's less searching cost, encouraging accuracy and ability to handle various challenges of face recognition offers its applicability on humanoid robots. The second problem in face recognition is the face spoofing, in which a face recognition system is not able to distinguish between a person and an imposter (photo/video of the genuine user). The problem will become more detrimental when robots are used as an authenticator. A depth analysis method has been investigated in our research work to test the liveness of imposters to discriminate them from the legitimate users. The implication of the previous earned techniques has been used with respect to criminal identification with NAO robot. An eyewitness can interact with NAO through a user interface. NAO asks several questions about the suspect, such as age, height, her/his facial shape and size etc., and then making a guess about her/his face.

Datasheets for Datasets Artificial Intelligence

Currently there is no standard way to identify how a dataset was created, and what characteristics, motivations, and potential skews it represents. To begin to address this issue, we propose the concept of a datasheet for datasets, a short document to accompany public datasets, commercial APIs, and pretrained models. The goal of this proposal is to enable better communication between dataset creators and users, and help the AI community move toward greater transparency and accountability. By analogy, in computer hardware, it has become industry standard to accompany everything from the simplest components (e.g., resistors), to the most complex microprocessor chips, with datasheets detailing standard operating characteristics, test results, recommended usage, and other information. We outline some of the questions a datasheet for datasets should answer. These questions focus on when, where, and how the training data was gathered, its recommended use cases, and, in the case of human-centric datasets, information regarding the subjects' demographics and consent as applicable. We develop prototypes of datasheets for two well-known datasets: Labeled Faces in The Wild~\cite{lfw} and the Pang \& Lee Polarity Dataset~\cite{polarity}.