Collaborating Authors

Gradient Descent Finds Global Minima for Generalizable Deep Neural Networks of Practical Sizes Machine Learning

In this paper, we theoretically prove that gradient descent can find a global minimum for nonlinear deep neural networks of sizes commonly encountered in practice. The theory developed in this paper requires only the number of trainable parameters to increase linearly as the number of training samples increases. This allows the size of the deep neural networks to be several orders of magnitude smaller than that required by the previous theories. Moreover, we prove that the linear increase of the size of the network is the optimal rate and that it cannot be improved, except by a logarithmic factor. Furthermore, deep neural networks with the trainability guarantee are shown to generalize well to unseen test samples with a natural dataset but not a random dataset.

Machine Learning for Generalizable Prediction of Flood Susceptibility


Flooding is a destructive and dangerous hazard and climate change appears to be increasing the frequency of catastrophic flooding events around the world. Physics-based flood models are costly to calibrate and are rarely generalizable across different river basins, as model outputs are sensitive to site-specific parameters and human-regulated infrastructure. In contrast, statistical models implicitly account for such factors through the data on which they are trained. Such models trained primarily from remotely-sensed Earth observation data could reduce the need for extensive in-situ measurements. In this work, we develop generalizable, multi-basin models of river flooding susceptibility using geographically-distributed data from the USGS stream gauge network.

GIID-Net: Generalizable Image Inpainting Detection via Neural Architecture Search and Attention Artificial Intelligence

Deep learning (DL) has demonstrated its powerful capabilities in the field of image inpainting, which could produce visually plausible results. Meanwhile, the malicious use of advanced image inpainting tools (e.g. removing key objects to report fake news) has led to increasing threats to the reliability of image data. To fight against the inpainting forgeries, in this work, we propose a novel end-to-end Generalizable Image Inpainting Detection Network (GIID-Net), to detect the inpainted regions at pixel accuracy. The proposed GIID-Net consists of three sub-blocks: the enhancement block, the extraction block and the decision block. Specifically, the enhancement block aims to enhance the inpainting traces by using hierarchically combined special layers. The extraction block, automatically designed by Neural Architecture Search (NAS) algorithm, is targeted to extract features for the actual inpainting detection tasks. In order to further optimize the extracted latent features, we integrate global and local attention modules in the decision block, where the global attention reduces the intra-class differences by measuring the similarity of global features, while the local attention strengthens the consistency of local features. Furthermore, we thoroughly study the generalizability of our GIID-Net, and find that different training data could result in vastly different generalization capability. Extensive experimental results are presented to validate the superiority of the proposed GIID-Net, compared with the state-of-the-art competitors. Our results would suggest that common artifacts are shared across diverse image inpainting methods. Finally, we build a public inpainting dataset of 10K image pairs for the future research in this area.

Do Language Models Perform Generalizable Commonsense Inference? Artificial Intelligence

Inspired by evidence that pretrained language models (LMs) encode commonsense knowledge, recent work has applied LMs to automatically populate commonsense knowledge graphs (CKGs). However, there is a lack of understanding on their generalization to multiple CKGs, unseen relations, and novel entities. This paper analyzes the ability of LMs to perform generalizable commonsense inference, in terms of knowledge capacity, transferability, and induction. Our experiments with these three aspects show that: (1) LMs can adapt to different schemas defined by multiple CKGs but fail to reuse the knowledge to generalize to new relations. (2) Adapted LMs generalize well to unseen subjects, but less so on novel objects. Future work should investigate how to improve the transferability and induction of commonsense mining from LMs.

Using Rotation, Translation, and Cropping to Boost Generalization in Deep Reinforcement Learning…


"Generalization" is an AI buzzword these days for good reason: most scientists would love to see the models they're training in simulations and video game environments evolve and expand to take on meaningful real-world challenges -- for example in safety, conservation, medicine, etc. One concerned research area is deep reinforcement learning (DRL), which implements deep learning architectures with reinforcement learning algorithms to enable AI agents to learn the best actions possible to attain their goals in virtual environments. DRL has been widely applied in games and robotics. Such DRL agents have an impressive track record on Starcraft II and Dota-2. But because they were trained in fixed environments, studies suggest DRL agents can fail to generalize to even slight variations of their training environments.