Adaptive Multi-Compositionality for Recursive Neural Models with Applications to Sentiment Analysis

AAAI Conferences

Recursive neural models have achieved promising results in many natural language processing tasks. The main difference among these models lies in the composition function, i.e., how to obtain the vector representation for a phrase or sentence using the representations of words it contains. This paper introduces a novel Adaptive Multi-Compositionality (AdaMC) layer to recursive neural models. The basic idea is to use more than one composition functions and adaptively select them depending on the input vectors. We present a general framework to model each semantic composition as a distribution over these composition functions. The composition functions and parameters used for adaptive selection are learned jointly from data. We integrate AdaMC into existing recursive neural models and conduct extensive experiments on the Stanford Sentiment Treebank. The results illustrate that AdaMC significantly outperforms state-of-the-art sentiment classification methods. It helps push the best accuracy of sentence-level negative/positive classification from 85.4% up to 88.5%.


Deep Recursive Neural Networks for Compositionality in Language

Neural Information Processing Systems

Recursive neural networks comprise a class of architecture that can operate on structured input. They have been previously successfully applied to model compositionality in natural language using parse-tree-based structural representations. Even though these architectures are deep in structure, they lack the capacity for hierarchical representation that exists in conventional deep feed-forward networks as well as in recently investigated deep recurrent neural networks. In this work we introduce a new architecture --- a deep recursive neural network (deep RNN) --- constructed by stacking multiple recursive layers. We evaluate the proposed model on the task of fine-grained sentiment classification. Our results show that deep RNNs outperform associated shallow counterparts that employ the same number of parameters. Furthermore, our approach outperforms previous baselines on the sentiment analysis task, including a multiplicative RNN variant as well as the recently introduced paragraph vectors, achieving new state-of-the-art results. We provide exploratory analyses of the effect of multiple layers and show that they capture different aspects of compositionality in language.


Modeling Compositionality with Multiplicative Recurrent Neural Networks

arXiv.org Machine Learning

We present the multiplicative recurrent neural network as a general model for compositional meaning in language, and evaluate it on the task of fine-grained sentiment analysis. We establish a connection to the previously investigated matrix-space models for compositionality, and show they are special cases of the multiplicative recurrent net. Our experiments show that these models perform comparably or better than Elman-type additive recurrent neural networks and outperform matrix-space models on a standard fine-grained sentiment analysis corpus. Furthermore, they yield comparable results to structural deep models on the recently published Stanford Sentiment Treebank without the need for generating parse trees.


When Are Tree Structures Necessary for Deep Learning of Representations?

arXiv.org Artificial Intelligence

Recursive neural models, which use syntactic parse trees to recursively generate representations bottom-up, are a popular architecture. But there have not been rigorous evaluations showing for exactly which tasks this syntax-based method is appropriate. In this paper we benchmark {\bf recursive} neural models against sequential {\bf recurrent} neural models (simple recurrent and LSTM models), enforcing apples-to-apples comparison as much as possible. We investigate 4 tasks: (1) sentiment classification at the sentence level and phrase level; (2) matching questions to answer-phrases; (3) discourse parsing; (4) semantic relation extraction (e.g., {\em component-whole} between nouns). Our goal is to understand better when, and why, recursive models can outperform simpler models. We find that recursive models help mainly on tasks (like semantic relation extraction) that require associating headwords across a long distance, particularly on very long sequences. We then introduce a method for allowing recurrent models to achieve similar performance: breaking long sentences into clause-like units at punctuation and processing them separately before combining. Our results thus help understand the limitations of both classes of models, and suggest directions for improving recurrent models.


Global Belief Recursive Neural Networks

Neural Information Processing Systems

Recursive Neural Networks have recently obtained state of the art performance on several natural language processing tasks. However, because of their feedforward architecture they cannot correctly predict phrase or word labels that are determined by context. This is a problem in tasks such as aspect-specific sentiment classification which tries to, for instance, predict that the word Android is positive in the sentence Android beats iOS. We introduce global belief recursive neural networks (GB-RNNs) which are based on the idea of extending purely feedforward neural networks to include one feedbackward step during inference. This allows phrase level predictions and representations to give feedback to words. We show the effectiveness of this model on the task of contextual sentiment analysis. We also show that dropout can improve RNN training and that a combination of unsupervised and supervised word vector representations performs better than either alone. The feedbackward step improves F1 performance by 3% over the standard RNN on this task, obtains state-of-the-art performance on the SemEval 2013 challenge and can accurately predict the sentiment of specific entities.