Goto

Collaborating Authors

What Should I Learn First: Introducing LectureBank for NLP Education and Prerequisite Chain Learning

arXiv.org Machine Learning

Recent years have witnessed the rising popularity of Natural Language Processing (NLP) and related fields such as Artificial Intelligence (AI) and Machine Learning (ML). Many online courses and resources are available even for those without a strong background in the field. Often the student is curious about a specific topic but does not quite know where to begin studying. To answer the question of "what should one learn first," we apply an embedding-based method to learn prerequisite relations for course concepts in the domain of NLP. We introduce LectureBank, a dataset containing 1,352 English lecture files collected from university courses which are each classified according to an existing taxonomy as well as 208 manually-labeled prerequisite relation topics, which is publicly available. The dataset will be useful for educational purposes such as lecture preparation and organization as well as applications such as reading list generation. Additionally, we experiment with neural graph-based networks and non-neural classifiers to learn these prerequisite relations from our dataset.




GritNet 2: Real-Time Student Performance Prediction with Domain Adaptation

arXiv.org Machine Learning

Increasingly fast development and update cycle of online course contents, and diverse demographics of students in each online classroom, make student performance prediction in real-time (before the course finishes) an interesting topic for both industrial research and practical needs. In that, we tackle the problem of real-time student performance prediction with on-going courses in domain adaptation framework, which is a system trained on students' labeled outcome from one previous coursework but is meant to be deployed on another. In particular, we first review recently-developed GritNet architecture which is the current state of the art for student performance prediction problem, and introduce a new unsupervised domain adaptation method to transfer a GritNet trained on a past course to a new course without any (students' outcome) label. Our results for real Udacity students' graduation predictions show that the GritNet not only generalizes well from one course to another across different Nanodegree programs, but enhances real-time predictions explicitly in the first few weeks when accurate predictions are most challenging.


Deep Learning Prerequisites: Logistic Regression in Python

#artificialintelligence

Online Courses Udemy | Deep Learning Prerequisites: Logistic Regression in Python Data science techniques for professionals and students - learn the theory behind logistic regression and code in Python BESTSELLER Created by Lazy Programmer Inc.  English [Auto-generated], Portuguese [Auto-generated], 1 more Students also bought Natural Language Processing with Deep Learning in Python Data Science: Natural Language Processing (NLP) in Python Deep Learning: Advanced Computer Vision (GANs, SSD, +More!) Unsupervised Machine Learning Hidden Markov Models in Python Modern Deep Learning in Python Preview this course GET COUPON CODE 100% Off Udemy Coupon . Free Udemy Courses . Online Classes