Computing Your Skill

#artificialintelligence

Summary: I describe how the TrueSkill algorithm works using concepts you're already familiar with. TrueSkill is used on Xbox Live to rank and match players and it serves as a great way to understand how statistical machine learning is actually applied today. I've also created an open source project where I implemented TrueSkill three different times in increasing complexity and capability. In addition, I've created a detailed supplemental math paper that works out equations that I gloss over here. Feel free to jump to sections that look interesting and ignore ones that seem boring. Don't worry if this post seems a bit long, there are lots of pictures. It seemed easy enough: I wanted to create a database to track the skill levels of my coworkers in chess and foosball. I already knew that I wasn't very good at foosball and would bring down better players. I was curious if an algorithm could do a better job at creating well-balanced matches. I also wanted to see if I was improving at chess. I knew I needed to have an easy way to collect results from everyone and then use an algorithm that would keep getting better with more data. I was looking for a way to compress all that data and distill it down to some simple knowledge of how skilled people are. Based on some previous things that I had heard about, this seemed like a good fit for "machine learning." Machine learning is a hot area in Computer Science-- but it's intimidating. Like most subjects, there's a lot to learn to be an expert in the field. I didn't need to go very deep; I just needed to understand enough to solve my problem. I found a link to the paper describing the TrueSkill algorithm and I read it several times, but it didn't make sense. It was only 8 pages long, but it seemed beyond my capability to understand.


Towards Strategic Kriegspiel Play with Opponent Modeling

AAAI Conferences

Kriesgpiel, or partially observable chess, is appealing to the AI community due to its similarity to real-world applications in which a decision maker is not a lone agent changing the environment. This paper applies the framework of Interactive POMDPs to design a competent Kriegspiel player. The novel element, compared to the existing approaches, is to model the opponent as a competent player and to predict his likely moves. The moves of our own player can then be computed based on these predictions. The problem is challenging because, first, there are many possible world states the agent has to keep track of.


Standing on the shoulders of giants

#artificialintelligence

When you think of AI or machine learning you may draw up images of AlphaZero or even some science fiction reference such as HAL-9000 from 2001: A Space Odyssey. However, the true forefather, who set the stage for all of this, was the great Arthur Samuel. Samuel was a computer scientist, visionary, and pioneer, who wrote the first checkers program for the IBM 701 in the early 1950s. His program, "Samuel's Checkers Program", was first shown to the general public on TV on February 24th, 1956, and the impact was so powerful that IBM stock went up 15 points overnight (a huge jump at that time). This program also helped set the stage for all the modern chess programs we have come to know so well, with features like look-ahead, an evaluation function, and a mini-max search that he would later develop into alpha-beta pruning.


Killer Robots? Lost Jobs?

Slate

The recent win of AlphaGo over Lee Sedol--one of the world's highest ranked Go players--has resurfaced concerns about artificial intelligence. We have heard about A.I. stealing jobs, killer robots, algorithms that help diagnose and cure cancer, competent self-driving cars, perfect poker players, and more. It seems that for every mention of A.I. as humanity's top existential risk, there is a mention of its power to solve humanity's biggest challenges. Demis Hassabis--founder of Google DeepMind, the company behind AlphaGo--views A.I. as "potentially a meta-solution to any problem," and Eric Horvitz--director of research at Microsoft's Redmond, Washington, lab--claims that "A.I. will be incredibly empowering to humanity." By contrast, Bill Gates has called A.I. "a huge challenge" and something to "worry about," and Stephen Hawking has warned about A.I. ending humanity.


The Moral Imperative of Artificial Intelligence

#artificialintelligence

The big news on March 12 of this year was of the Go-playing AI-system AlphaGo securing victory against 18-time world champion Lee Se-dol by winning the third straight game of a five-game match in Seoul, Korea. After Deep Blue's victory against chess world champion Gary Kasparov in 1997, the game of Go was the next grand challenge for game-playing artificial intelligence. Go has defied the brute-force methods in game-tree search that worked so successfully in chess. In 2012, Communications published a Research Highlight article by Sylvain Gelly et al. on computer Go, which reported that "Programs based on Monte-Carlo tree search now play at human-master levels and are beginning to challenge top professional players." AlphaGo combines tree-search techniques with search-space reduction techniques that use deep learning.