Goto

Collaborating Authors


A Robust Transferable Deep Learning Framework for Cross-sectional Investment Strategy

arXiv.org Machine Learning

Stock return predictability is an important research theme as it reflects our economic and social organization, and significant efforts are made to explain the dynamism therein. Statistics of strong explanative power, called "factor" have been proposed to summarize the essence of predictive stock returns. Although machine learning methods are increasingly popular in stock return prediction, an inference of the stock returns is highly elusive, and still most investors, if partly, rely on their intuition to build a better decision making. The challenge here is to make an investment strategy that is consistent over a reasonably long period, with the minimum human decision on the entire process. To this end, we propose a new stock return prediction framework that we call Ranked Information Coefficient Neural Network (RIC-NN). RIC-NN is a deep learning approach and includes the following three novel ideas: (1) nonlinear multi-factor approach, (2) stopping criteria with ranked information coefficient (rank IC), and (3) deep transfer learning among multiple regions. Experimental comparison with the stocks in the Morgan Stanley Capital International (MSCI) indices shows that RIC-NN outperforms not only off-the-shelf machine learning methods but also the average return of major equity investment funds in the last fourteen years.


Stock Selection via Nonlinear Multi-Factor Models

Neural Information Processing Systems

This paper discusses the use of multilayer feed forward neural networks for predicting a stock's excess return based on its exposure to various technical and fundamental factors. To demonstrate the effectiveness of the approach a hedged portfolio which consists of equally capitalized long and short positions is constructed and its historical returns are benchmarked against T-bill returns and the S&P500 index. 1 Introduction


Stock Selection via Nonlinear Multi-Factor Models

Neural Information Processing Systems

This paper discusses the use of multilayer feed forward neural networks for predicting a stock's excess return based on its exposure to various technical and fundamental factors. To demonstrate the effectiveness of the approach a hedged portfolio which consists of equally capitalized long and short positions is constructed and its historical returns are benchmarked against T-bill returns and the S&P500 index. 1 Introduction


Stock Selection via Nonlinear Multi-Factor Models

Neural Information Processing Systems

This paper discusses the use of multilayer feedforward neural networks forpredicting a stock's excess return based on its exposure to various technical and fundamental factors. To demonstrate the effectiveness of the approach a hedged portfolio which consists of equally capitalized long and short positions is constructed and its historical returns are benchmarked against T-bill returns and the S&P500 index. 1 Introduction