Collaborating Authors

Text Analysis 101; A Basic Understanding for Business Users: Document Classification - AYLIEN


The automatic classification of documents is an example of how Machine Learning (ML) and Natural Language Processing (NLP) can be leveraged to enable machines to better understand human language. By classifying text, we are aiming to assign one or more classes or categories to a document or piece of text, making it easier to manage and sort the documents. Manually categorizing and grouping text sources can be extremely laborious and time-consuming, especially for publishers, news sites, blogs or anyone who deals with a lot of content. Broadly speaking, there are two classes of ML techniques: supervised and unsupervised. In supervised methods, a model is created based on previous observations i.e. a training set.

Moving Towards Open Set Incremental Learning: Readily Discovering New Authors Machine Learning

The classification of textual data often yields important information. Most classifiers work in a closed world setting where the classifier is trained on a known corpus, and then it is tested on unseen examples that belong to one of the classes seen during training. Despite the usefulness of this design, often there is a need to classify unseen examples that do not belong to any of the classes on which the classifier was trained. This paper describes the open set scenario where unseen examples from previously unseen classes are handled while testing. This further examines a process of enhanced open set classification with a deep neural network that discovers new classes by clustering the examples identified as belonging to unknown classes, followed by a process of retraining the classifier with newly recognized classes. Through this process the model moves to an incremental learning model where it continuously finds and learns from novel classes of data that have been identified automatically. This paper also develops a new metric that measures multiple attributes of clustering open set data. Multiple experiments across two author attribution data sets demonstrate the creation an incremental model that produces excellent results.

Learning to Identify Known and Unknown Classes: A Case Study in Open World Malware Classification

AAAI Conferences

In this paper we propose an open world malware classification. Our approach is not only able to identify known families of malware but is also able to distinguish them from malware families that were never seen before. Our proposed approach is more accurate and scales better on two evaluation datasets when compared to existing algorithms.

How Document Classification Can Improve Business Processes


The process of labeling documents into categories based on the type of the content is known as document classification. It can also be defined as the process of assigning one or more classes or categories to a document (depending on the type of content) to make it easy to sort and manage images, texts, and videos. Document classification can be done using artificial intelligence, machine learning, and python. This classification can be done in two ways: manually or automatically. The former gives humans full authority over the classification.

Distribution Networks for Open Set Learning Machine Learning

In open set learning, a model must be able to generalize to novel classes when it encounters a sample that does not belong to any of the classes it has seen before. Open set learning poses a realistic learning scenario that is receiving growing attention. Existing studies on open set learning mainly focused on detecting novel classes, but few studies tried to model them for differentiating novel classes. We recognize that novel classes should be different from each other, and propose distribution networks for open set learning that can learn and model different novel classes. We hypothesize that, through a certain mapping, samples from different classes with the same classification criterion should follow different probability distributions from the same distribution family. We estimate the probability distribution for each known class and a novel class is detected when a sample is not likely to belong to any of the known distributions. Due to the large feature dimension in the original feature space, the probability distributions in the original feature space are difficult to estimate. Distribution networks map the samples in the original feature space to a latent space where the distributions of known classes can be jointly learned with the network. In the latent space, we also propose a distribution parameter transfer strategy for novel class detection and modeling. By novel class modeling, the detected novel classes can serve as known classes to the subsequent classification. Our experimental results on image datasets MNIST and CIFAR10 and text dataset Ohsumed show that the distribution networks can detect novel classes accurately and model them well for the subsequent classification tasks.