Collaborating Authors

Deep Transfer Learning for NLP with Transformers


This is arguably the most important architecture for natural language processing (NLP) today. Specifically, we look at modeling frameworks such as the generative pretrained transformer (GPT), bidirectional encoder representations from transformers (BERT) and multilingual BERT (mBERT). These methods employ neural networks with more parameters than most deep convolutional and recurrent neural network models. Despite the larger size, they've exploded in popularity because they scale comparatively more effectively on parallel computing architecture. This enables even larger and more sophisticated models to be developed in practice. Until the arrival of the transformer, the dominant NLP models relied on recurrent and convolutional components. Additionally, the best sequence modeling and transduction problems, such as machine translation, rely on an encoder-decoder architecture with an attention mechanism to detect which parts of the input influence each part of the output. The transformer aims to replace the recurrent and convolutional components entirely with attention.

How Transformers work in deep learning and NLP: an intuitive introduction


The famous paper "Attention is all you need" in 2017 changed the way we were thinking about attention. Nonetheless, 2020 was definitely the year of transformers! From natural language now they are into computer vision tasks. How did we go from attention to self-attention? Why does the transformer work so damn well? What are the critical components for its success? Read on and find out! In my opinion, transformers are not so hard to grasp.



Transformer models have become the go-to model in most of the NLP tasks. Many transformer-based models like BERT, ROBERTa, GPT series, etc are considered as the state-of-the-art models in NLP. While NLP is overwhelming with all these models, Transformers are gaining popularity in Computer vision also. Transformers are now used for recognizing and constructing images, image encoding, and many more. While transformer models are taking over the AI field, it is also important to have a low-level understanding of these models.

DeepLobe - Machine Learning API as a Service Platform


Day by day the number of machine learning models is increasing at a pace. With this increasing rate, it is hard for beginners to choose an effective model to perform Natural Language Understanding (NLU) and Natural Language Generation (NLG) mechanisms. Researchers across the globe are working around the clock to achieve more progress in artificial intelligence to build agile and intuitive sequence-to-sequence learning models. And in recent times transformers are one such model which gained more prominence in the field of machine learning to perform speech-to-text activities. The wide availability of other sequence-to-sequence learning models like RNNs, LSTMs, and GRU always raises a challenge for beginners when they think about transformers.

Building the Vision Transformer From Scratch


Though originally developed for NLP, the transformer architecture is gradually making its way into many different areas of deep learning, including image classification and labeling and even reinforcement learning. It's an amazingly versatile architecture and very powerful at representing whatever it's being used to model. As part of my effort to understand fundamental architectures and their applications better, I decided to implement the vision transformer (ViT) from the paper┬╣ directly, without referencing the official codebase. In this post, I'll explain how it works (and how my version is implemented). I'll start with a brief review of how transformers work, but I won't get too deep into the weeds here since there are many other excellent guides to transformers (see The Illustrated Transformer for my favorite one).