16. Appendix: Mathematics for Deep Learning -- Dive into Deep Learning 0.7 documentation

#artificialintelligence

One of the wonderful parts of modern deep learning is the fact that much of it can be understood and used without a full understanding of the mathematics below it. This is a sign of the fact that the field is becoming more mature. Most software developers no longer need to worry about the theory of computable functions, or if programming languages without a goto can emulate programming languages with a goto with at most constant overhead, and neither should the deep learning practitioner need to worry about the theoretical foundations maximum likelihood learning, if one can find an architecture to approximate a target function to an arbitrary degree of accuracy. That said, we are not quite there yet. Sometimes when building a model in practice you will need to understand how architectural choices influence gradient flow, or what assumptions you are making by training with a certain loss function.


The Mathematics of Machine Learning

#artificialintelligence

Finally, the main aim of this blog post is to give a well-intentioned advice about the importance of Mathematics in Machine Learning and the necessary topics and useful resources for a mastery of these topics. However, some Machine Learning enthusiasts are novice in Maths and will probably find this post disheartening (seriously, this is not my aim). For beginners, you don't need a lot of Mathematics to start doing Machine Learning. The fundamental prerequisite is data analysis as described in this blog post and you can learn the maths on the go as you master more techniques and algorithms.


19 MOOCs on Maths & Statistics for Data Science & Machine Learning

#artificialintelligence

This is an interesting course on applications of linear algebra in data science. The course will first take you through fundamentals of linear algebra. Then, it will introduce you to applications of linear algebra for recognizing handwritten numbers, ranking of sports team along with online codes. The course is open for enrollment.


The Mathematics of Machine Learning

#artificialintelligence

In the last few months, I have had several people contact me about their enthusiasm for venturing into the world of data science and using Machine Learning (ML) techniques to probe statistical regularities and build impeccable data-driven products. However, I've observed that some actually lack the necessary mathematical intuition and framework to get useful results. This is the main reason I decided to write this blog post. Recently, there has been an upsurge in the availability of many easy-to-use machine and deep learning packages such as scikit-learn, Weka, Tensorflow etc. Machine Learning theory is a field that intersects statistical, probabilistic, computer science and algorithmic aspects arising from learning iteratively from data and finding hidden insights which can be used to build intelligent applications. Despite the immense possibilities of Machine and Deep Learning, a thorough mathematical understanding of many of these techniques is necessary for a good grasp of the inner workings of the algorithms and getting good results.


The Mathematics of Machine Learning

#artificialintelligence

In the last few months, I have had several people contact me about their enthusiasm for venturing into the world of data science and using Machine Learning (ML) techniques to probe statistical regularities and build impeccable data-driven products. However, I have observed that some actually lack the necessary mathematical intuition and framework to get useful results. This is the main reason I decided to write this blog post. Recently, there has been an upsurge in the availability of many easy-to-use machine and deep learning packages such as scikit-learn, Weka, Tensorflow, R-caret etc. Machine Learning theory is a field that intersects statistical, probabilistic, computer science and algorithmic aspects arising from learning iteratively from data and finding hidden insights which can be used to build intelligent applications. Despite the immense possibilities of Machine and Deep Learning, a thorough mathematical understanding of many of these techniques is necessary for a good grasp of the inner workings of the algorithms and getting good results.