Goto

Collaborating Authors

Neural Architecture

Neural Information Processing Systems

Valentino Braitenberg Max Planck Institute Federal Republic of Germany While we are waiting for the ultimate biophysics of cell membranes and synapses to be completed, we may speculate on the shapes of neurons and on the patterns of their connections. Much of this will be significant whatever the outcome of future physiology. Take as an example the isotropy, anisotropy and periodicity of different kinds of neural networks. The very existence of these different types in different parts of the brain (or in different brains) defeats explanation in terms of embryology; the mechanisms of development are able to make one kind of network or another. The reasons for the difference must be in the functions they perform.


Neural Architecture

Neural Information Processing Systems

While we are waiting for the ultimate biophysics of cell membranes and synapses to be completed, we may speculate on the shapes of neurons and on the patterns of their connections. Much of this will be significant whatever the outcome of future physiology. Take as an example the isotropy, anisotropy and periodicity of different kinds of neural networks. The very existence of these different types in different parts of the brain (or in different brains) defeats explanation in terms of embryology; the mechanisms of development are able to make one kind of network or another. The reasons for the difference must be in the functions they perform.


Neural Architecture

Neural Information Processing Systems

While we are waiting for the ultimate biophysics of cell membranes and synapses to be completed, we may speculate on the shapes of neurons and on the patterns of their connections. Much of this will be significant whatever the outcome of future physiology. Take as an example the isotropy, anisotropy and periodicity of different kinds of neural networks. The very existence of these different types in different parts of the brain (or in different brains) defeats explanation in terms of embryology; the mechanisms of development are able to make one kind of network or another. The reasons for the difference must be in the functions they perform.


Neural system identification for large populations separating "what" and "where"

Neural Information Processing Systems

Neuroscientists classify neurons into different types that perform similar computations at different locations in the visual field. Traditional methods for neural system identification do not capitalize on this separation of "what" and "where". Learning deep convolutional feature spaces that are shared among many neurons provides an exciting path forward, but the architectural design needs to account for data limitations: While new experimental techniques enable recordings from thousands of neurons, experimental time is limited so that one can sample only a small fraction of each neuron's response space. Here, we show that a major bottleneck for fitting convolutional neural networks (CNNs) to neural data is the estimation of the individual receptive field locations – a problem that has been scratched only at the surface thus far. We propose a CNN architecture with a sparse readout layer factorizing the spatial (where) and feature (what) dimensions.


Efficient Architecture Search for Continual Learning

arXiv.org Artificial Intelligence

Continual learning with neural networks is an important learning framework in AI that aims to learn a sequence of tasks well. However, it is often confronted with three challenges: (1) overcome the catastrophic forgetting problem, (2) adapt the current network to new tasks, and meanwhile (3) control its model complexity. To reach these goals, we propose a novel approach named as Continual Learning with Efficient Architecture Search, or CLEAS in short. CLEAS works closely with neural architecture search (NAS) which leverages reinforcement learning techniques to search for the best neural architecture that fits a new task. In particular, we design a neuron-level NAS controller that decides which old neurons from previous tasks should be reused (knowledge transfer), and which new neurons should be added (to learn new knowledge). Such a fine-grained controller allows one to find a very concise architecture that can fit each new task well. Meanwhile, since we do not alter the weights of the reused neurons, we perfectly memorize the knowledge learned from previous tasks. We evaluate CLEAS on numerous sequential classification tasks, and the results demonstrate that CLEAS outperforms other state-of-the-art alternative methods, achieving higher classification accuracy while using simpler neural architectures.