Goto

Collaborating Authors

A review of machine learning applications in wildfire science and management

arXiv.org Machine Learning

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.


Which is your favorite Machine Learning Algorithm?

#artificialintelligence

Developed back in the 50s by Rosenblatt and colleagues, this extremely simple algorithm can be viewed as the foundation for some of the most successful classifiers today, including suport vector machines and logistic regression, solved using stochastic gradient descent. The convergence proof for the Perceptron algorithm is one of the most elegant pieces of math I've seen in ML. Most useful: Boosting, especially boosted decision trees. This intuitive approach allows you to build highly accurate ML models, by combining many simple ones. Boosting is one of the most practical methods in ML, it's widely used in industry, can handle a wide variety of data types, and can be implemented at scale.


These Are The Most Elegant, Useful Algorithms In Machine Learning

#artificialintelligence

Developed back in the 50s by Rosenblatt and colleagues, this extremely simple algorithm can be viewed as the foundation for some of the most successful classifiers today, including suport vector machines and logistic regression, solved using stochastic gradient descent. The convergence proof for the Perceptron algorithm is one of the most elegant pieces of math I've seen in ML. Most useful: Boosting, especially boosted decision trees. This intuitive approach allows you to build highly accurate ML models, by combining many simple ones. Boosting is one of the most practical methods in ML, it's widely used in industry, can handle a wide variety of data types, and can be implemented at scale.


Thirty Years of Machine Learning:The Road to Pareto-Optimal Next-Generation Wireless Networks

arXiv.org Machine Learning

Next-generation wireless networks (NGWN) have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of machine learning by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning, respectively. Furthermore, we investigate their employment in the compelling applications of NGWNs, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various machine learning algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.


Intelligence, physics and information -- the tradeoff between accuracy and simplicity in machine learning

arXiv.org Machine Learning

How can we enable machines to make sense of the world, and become better at learning? To approach this goal, I believe viewing intelligence in terms of many integral aspects, and also a universal two-term tradeoff between task performance and complexity, provides two feasible perspectives. In this thesis, I address several key questions in some aspects of intelligence, and study the phase transitions in the two-term tradeoff, using strategies and tools from physics and information. Firstly, how can we make the learning models more flexible and efficient, so that agents can learn quickly with fewer examples? Inspired by how physicists model the world, we introduce a paradigm and an AI Physicist agent for simultaneously learning many small specialized models (theories) and the domain they are accurate, which can then be simplified, unified and stored, facilitating few-shot learning in a continual way. Secondly, for representation learning, when can we learn a good representation, and how does learning depend on the structure of the dataset? We approach this question by studying phase transitions when tuning the tradeoff hyperparameter. In the information bottleneck, we theoretically show that these phase transitions are predictable and reveal structure in the relationships between the data, the model, the learned representation and the loss landscape. Thirdly, how can agents discover causality from observations? We address part of this question by introducing an algorithm that combines prediction and minimizing information from the input, for exploratory causal discovery from observational time series. Fourthly, to make models more robust to label noise, we introduce Rank Pruning, a robust algorithm for classification with noisy labels. I believe that building on the work of my thesis we will be one step closer to enable more intelligent machines that can make sense of the world.