Goto

Collaborating Authors

A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


Deep Reinforcement Learning

arXiv.org Machine Learning

We discuss deep reinforcement learning in an overview style. We draw a big picture, filled with details. We discuss six core elements, six important mechanisms, and twelve applications, focusing on contemporary work, and in historical contexts. We start with background of artificial intelligence, machine learning, deep learning, and reinforcement learning (RL), with resources. Next we discuss RL core elements, including value function, policy, reward, model, exploration vs. exploitation, and representation. Then we discuss important mechanisms for RL, including attention and memory, unsupervised learning, hierarchical RL, multi-agent RL, relational RL, and learning to learn. After that, we discuss RL applications, including games, robotics, natural language processing (NLP), computer vision, finance, business management, healthcare, education, energy, transportation, computer systems, and, science, engineering, and art. Finally we summarize briefly, discuss challenges and opportunities, and close with an epilogue.


Overview of Udacity Artificial Intelligence Engineer Nanodegree, Term 1

#artificialintelligence

After finishing Udacity Deep Learning Foundation I felt that I got a good introduction to Deep Learning, but to understand things, I must dig deeper. Besides I had a guaranteed admission to Self-Driving Car Engineer, Artificial Intelligence, or Robotics Nanodegree programs.


Advanced AI: Deep Reinforcement Learning in Python

#artificialintelligence

Online Courses Udemy Advanced AI: Deep Reinforcement Learning in Python, The Complete Guide to Mastering Artificial Intelligence using Deep Learning and Neural Networks Created by Lazy Programmer Team, Lazy Programmer Inc. English [Auto-generated], Indonesian [Auto-generated], 5 more Students also bought Deep Learning: Convolutional Neural Networks in Python Deep Learning: Recurrent Neural Networks in Python Unsupervised Machine Learning Hidden Markov Models in Python Bayesian Machine Learning in Python: A/B Testing Data Science: Supervised Machine Learning in Python Preview this course GET COUPON CODE Description This course is all about the application of deep learning and neural networks to reinforcement learning. If you've taken my first reinforcement learning class, then you know that reinforcement learning is on the bleeding edge of what we can do with AI. Specifically, the combination of deep learning with reinforcement learning has led to AlphaGo beating a world champion in the strategy game Go, it has led to self-driving cars, and it has led to machines that can play video games at a superhuman level. Reinforcement learning has been around since the 70s but none of this has been possible until now. The world is changing at a very fast pace.


Deep Learning in Computer Vision Coursera

@machinelearnbot

About this course: Deep learning added a huge boost to the already rapidly developing field of computer vision. With deep learning, a lot of new applications of computer vision techniques have been introduced and are now becoming parts of our everyday lives. These include face recognition and indexing, photo stylization or machine vision in self-driving cars. The goal of this course is to introduce students to computer vision, starting from basics and then turning to more modern deep learning models. We will cover both image and video recognition, including image classification and annotation, object recognition and image search, various object detection techniques, motion estimation, object tracking in video, human action recognition, and finally image stylization, editing and new image generation.