Goto

Collaborating Authors

Top 15 Python Libraries For Data Science & Best Tutorials To Learn Them

#artificialintelligence

Python is the most widely used programming language today. When it comes to solving data science tasks and challenges, Python never ceases to surprise its users. Most data scientists are already leveraging the power of Python programming every day. Python is an easy-to-learn, easy-to-debug, widely used, object-oriented, open-source, high-performance language, and there are many more benefits to Python programming. Python has been built with extraordinary Python libraries for data science that are used by programmers every day in solving problems.Here today, We have curated a list of best 15 Python libraries that helps in Data Science and its periphery, when to use them, their advantages and best tutorials to learn them. Pandas stand for Python Data Analysis Library. Pandas is the best tool for data wrangling or munging.


Top 15 Python Libraries for Data Science in 2017 – ActiveWizards: machine learning company – Medium

@machinelearnbot

As Python has gained a lot of traction in the recent years in Data Science industry, I wanted to outline some of its most useful libraries for data scientists and engineers, based on recent experience. And, since all of the libraries are open sourced, we have added commits, contributors count and other metrics from Github, which could be served as a proxy metrics for library popularity. When starting to deal with the scientific task in Python, one inevitably comes for help to Python's SciPy Stack, which is a collection of software specifically designed for scientific computing in Python (do not confuse with SciPy library, which is part of this stack, and the community around this stack). This way we want to start with a look at it. However, the stack is pretty vast, there is more than a dozen of libraries in it, and we want to put a focal point on the core packages (particularly the most essential ones).


Top 15 Python Libraries for Data Science in 2020

#artificialintelligence

Python is one of the most popular languages used by data scientists and software developers. In this article, you'll see a line-up of the most important Python libraries for data science tasks, covering areas such as data processing, modeling, and visualization. Python is one of the most popular languages used by data scientists and software developers alike for data science tasks. It can be used to predict outcomes, automate tasks, streamline processes, and offer business intelligence insights. It's possible to work with data in vanilla Python, but there are quite a few open-source libraries that make Python data tasks much, much easier.


Top Python Libraries for Data Science

#artificialintelligence

Statsmodels is an open-source statistics-driven module that offers various classes and functions to the many statistical models available for statistical analysis and exploration of data. The module covers a vast number of models ranging from Linear Regression, Discrete Models, Time Series Analysis, Survival Analysis, and many other miscellaneous models.


Top 20 Python libraries for data science in 2018

#artificialintelligence

Python continues to take leading positions in solving data science tasks and challenges. Last year we made a blog post overviewing the Python's libraries that proved to be the most helpful at that moment. This year, we expanded our list with new libraries and gave a fresh look to the ones we already talked about, focusing on the updates that have been made during the year. Our selection actually contains more than 20 libraries, as some of them are alternatives to each other and solve the same problem. Therefore we have grouped them as it's difficult to distinguish one particular leader at the moment.