Framework and Schema for Semantic Web Knowledge Bases

AAAI Conferences

There is a growing need for scalable semantic web repositories which support inference and provide efficient queries. There is also a growing interest in representing uncertain knowledge in semantic web datasets and ontologies. In this paper, I present a bit vector schema specifically designed for RDF (Resource Description Framework) datasets. I propose a system for materializing and storing inferred knowledge using this schema. I show experimental results that demonstrate that this solution simplifies inference queries and drastically improves results. I also propose and describe a solution for materializing and persisting uncertain information and probabilities. Thresholds and bit vectors are used to provide efficient query access to this uncertain knowledge. My goal is to provide a semantic web repository that supports knowledge inference, uncertainty reasoning, and Bayesian networks, without sacrificing performance or scalability.

Where Are the Semantics in the Semantic Web?

AI Magazine

The most widely accepted defining feature of the semantic web is machine-usable content. By this definition, the semantic web is already manifest in shopping agents that automatically access and use web content to find the lowest air fares or book prices. However, where are the semantics? Most people regard the semantic web as a vision, not a reality -- so shopping agents should not "count." To use web content, machines need to know what to do when they encounter it, which, in turn, requires the machine to know what the content means (that is, its semantics). The challenge of developing the semantic web is how to put this knowledge into the machine. The manner in which it is done is at the heart of the confusion about the semantic web. The goal of this article is to clear up some of this confusion. I explain that shopping agents work in the complete absence of any explicit account of the semantics of web content because the meaning of the web content that the agents are expected to encounter can be determined by the human programmers who hardwire it into the web application software. I therefore regard shopping agents as a degenerate case of the semantic web. I note various shortcomings of this approach. I conclude by presenting some ideas about how the semantic web will likely evolve.

Translating OWL and Semantic Web Rules into Prolog: Moving Toward Description Logic Programs Artificial Intelligence

To appear in Theory and Practice of Logic Programming (TPLP), 2008. We are researching the interaction between the rule and the ontology layers of the Semantic Web, by comparing two options: 1) using OWL and its rule extension SWRL to develop an integrated ontology/rule language, and 2) layering rules on top of an ontology with RuleML and OWL. Toward this end, we are developing the SWORIER system, which enables efficient automated reasoning on ontologies and rules, by translating all of them into Prolog and adding a set of general rules that properly capture the semantics of OWL. We have also enabled the user to make dynamic changes on the fly, at run time. This work addresses several of the concerns expressed in previous work, such as negation, complementary classes, disjunctive heads, and cardinality, and it discusses alternative approaches for dealing with inconsistencies in the knowledge base. In addition, for efficiency, we implemented techniques called extensionalization, avoiding reanalysis, and code minimization.

Rough Set Semantics for Identity on the Web

AAAI Conferences

Identity relations are at the foundation of many logic-based knowledge representations. We argue that the traditional notion of equality, is unsuited for many realistic knowledge representation settings. The classical interpretation of equality is too strong when the equality statements are re-used outside their original context. On the Semantic Web, equality statements are used to interlink multiple descriptions of the same object, using owl:sameAs assertions. And indeed, many practical uses of owl:sameAs are known to violate the formal Leibniz-style semantics. We provide a more flexible semantics to identity by assigning meaning to the subrelations of an identity relation in terms of the predicates that are used in a knowledge-base. Using those indiscernability-predicates, we define upper and lower approximations of equality in the style of rought-set theory, resulting in a quality-measure for identity relations.

Configuring Configuration Requests: An Application to the Semantic Web

AAAI Conferences

Beyond its usual industrial fields of application, a current body of research explores the use of constraint based configuration to address general AI problems, like for instance automatic composition of semantically enriched web services (SWS). A configuration request is naturally formulated as a fragment of the desired solution, that the configurator will attempt to complete according to constraints. We address here a case where the design of the configuration request may itself be the result of a configuration phase, that helps the user design the request by formulating it on more abstract grounds. Within this framework, the configurator is first used to complete an abstract request formulated in a specific formalism. Then a translation is performed from the goal model to the final model to yield the actual request sent to the second configuration phase. This research builds on previous experience showing the adequacy of using configuration to compose SWS, that raised further issues regarding the nature of queries.