Collaborating Authors

CoroNet: A Deep Neural Network for Detection and Diagnosis of Covid-19 from Chest X-ray Images Machine Learning

The novel Coronavirus also called Covid-19 originated in Wuhan, China in December 2019 and has now spread across the world. It has so far infected around 1.8 million people and claimed approximately 114698 lives overall. As the number of cases are rapidly increasing, most of the countries are facing shortage of testing kits and resources. The limited quantity of testing kits and increasing number of daily cases encouraged us to come up with a Deep Learning model that can aid radiologists and clinicians in detecting Covid-19 cases using chest X-rays. Therefore, in this study, we propose CoroNet, a Deep Convolutional Neural Network model to automatically detect Covid-19 infection from chest X-ray images. The deep model called CoroNet has been trained and tested on a dataset prepared by collecting Covid-19 and other chest pneumonia X-ray images from two different publically available databases. The experimental results show that our proposed model achieved an overall accuracy of 89.5%, and more importantly the precision and recall rate for Covid-19 cases are 97% and 100%. The preliminary results of this study look promising which can be further improved as more training data becomes available. Overall, the proposed model substantially advances the current radiology based methodology and during Covid-19 pandemic, it can be very helpful tool for clinical practitioners and radiologists to aid them in diagnosis, quantification and follow-up of Covid-19 cases.

PneumoXttention: A CNN compensating for Human Fallibility when Detecting Pneumonia through CXR images with Attention Artificial Intelligence

Automatic Chest Radiograph X-ray (CXR) interpretation by machines is an important research topic of Artificial Intelligence. As part of my journey through the California Science Fair, I have developed an algorithm that can detect pneumonia from a CXR image to compensate for human fallibility. My algorithm, PneumoXttention, is an ensemble of two 13 layer convolutional neural network trained on the RSNA dataset, a dataset provided by the Radiological Society of North America, containing 26,684 frontal X-ray images split into the categories of pneumonia and no pneumonia. The dataset was annotated by many professional radiologists in North America. It achieved an impressive F1 score, 0.82, on the test set (20% random split of RSNA dataset) and completely compensated Human Radiologists on a random set of 25 test images drawn from RSNA and NIH. I don't have a direct comparison but Stanford's Chexnet has a F1 score of 0.435 on the NIH dataset for category Pneumonia.

Deep Convolutional Neural Networks to Diagnose COVID-19 and other Pneumonia Diseases from Posteroanterior Chest X-Rays Machine Learning

The article explores different deep convolutional neural network architectures trained and tested on posteroanterior chest X-rays of 327 patients who are healthy (152 patients), diagnosed with COVID-19 (125), and other types of pneumonia (48). In particular, this paper looks at the deep convolutional neural networks VGG16 and VGG19, InceptionResNetV2 and InceptionV3, as well as Xception, all followed by a flat multi-layer perceptron and a final 30% drop-out. The paper has found that the best performing network is VGG16 with a final $30$% drop-out trained over 3 classes (COVID-19, No Finding, Other Pneumonia). It has an internal cross-validated accuracy of $93.9(\pm3.4)$%, a COVID-19 sensitivity of $87.7(-1.9,+2)$%, and a No Finding sensitivity of $96.8(\pm0.8)$%. The respective external cross-validated values are $84.1(\pm13.5)$%, $87.7(-1.9,2)$%, and $96.8(\pm0.8)$%. The model optimizer was Adam with a 1e-4 learning rate, and categorical cross-entropy loss. It is hoped that, once this research will be put to practice in hospitals, healthcare professionals will be able in the medium to long-term to diagnosing through machine learning tools possible pneumonia, and if detected, whether it is linked to a COVID-19 infection, allowing the detection of new possible COVID-19 foyers after the end of possible "stop-and-go" lockdowns as expected by until a vaccine is found and widespread. Furthermore, in the short-term, it is hoped practitioners can compare the diagnosis from the deep convolutional neural networks with possible RT-PCR testing results, and if clashing, a Computed Tomography could be performed as they are more accurate in showing COVID-19 pneumonia.

Building a Convolutional Neural Network for Image Classification with Tensorflow


Convolutional Neural Network (CNN) is a special type of deep neural network that performs impressively in computer vision problems such as image classification, object detection, etc. In this article, we are going to create an image classifier with Tensorflow by implementing a CNN to classify cats & dogs. With traditional programming is it not possible to build scalable solutions for problems like computer vision since it is not feasible to write an algorithm that is generalized enough to identify the nature of images. With machine learning, we can build an approximation that is sufficient enough for use-cases by training a model for given examples and predict for unseen data. CNN is constructed with multiple convolution layers, pooling layers, and dense layers.