Can automated smoothing significantly improve benchmark time series classification algorithms? Machine Learning

We assess whether using six smoothing algorithms (moving average, exponential smoothing, Gaussian filter, Savitzky-Golay filter, Fourier approximation and a recursive median sieve) could be automatically applied to time series classification problems as a preprocessing step to improve the performance of three benchmark classifiers (1-Nearest Neighbour with Euclidean and Dynamic Time Warping distances, and Rotation Forest). We found no significant improvement over unsmoothed data even when we set the smoothing parameter through cross validation. We are not claiming smoothing has no worth. It has an important role in exploratory analysis and helps with specific classification problems where domain knowledge can be exploited. What we observe is that the automatic application does not help and that we cannot explain the improvement of other time series classification algorithms over the baseline classifiers simply as a function of the absence of smoothing.

Different but Equal: Comparing User Collaboration with Digital Personal Assistants vs. Teams of Expert Agents Artificial Intelligence

This work compares user collaboration with conversational personal assistants vs. teams of expert chatbots. Two studies were performed to investigate whether each approach affects accomplishment of tasks and collaboration costs. Participants interacted with two equivalent financial advice chatbot systems, one composed of a single conversational adviser and the other based on a team of four experts chatbots. Results indicated that users had different forms of experiences but were equally able to achieve their goals. Contrary to the expected, there were evidences that in the teamwork situation that users were more able to predict agent behavior better and did not have an overhead to maintain common ground, indicating similar collaboration costs. The results point towards the feasibility of either of the two approaches for user collaboration with conversational agents.

If dropout limits trainable depth, does critical initialisation still matter? A large-scale statistical analysis on ReLU networks Machine Learning

Recent work in signal propagation theory has shown that dropout limits the depth to which information can propagate through a neural network. In this paper, we investigate the effect of initialisation on training speed and generalisation for ReLU networks within this depth limit. We ask the following research question: given that critical initialisation is crucial for training at large depth, if dropout limits the depth at which networks are trainable, does initialising critically still matter? We conduct a large-scale controlled experiment, and perform a statistical analysis of over $12000$ trained networks. We find that (1) trainable networks show no statistically significant difference in performance over a wide range of non-critical initialisations; (2) for initialisations that show a statistically significant difference, the net effect on performance is small; (3) only extreme initialisations (very small or very large) perform worse than criticality. These findings also apply to standard ReLU networks of moderate depth as a special case of zero dropout. Our results therefore suggest that, in the shallow-to-moderate depth setting, critical initialisation provides zero performance gains when compared to off-critical initialisations and that searching for off-critical initialisations that might improve training speed or generalisation, is likely to be a fruitless endeavour.

Eigen Values Features for the Classification of Brain Signals corresponding to 2D and 3D Educational Contents Machine Learning

In this paper, we have proposed a brain signal classification method, which uses eigenvalues of the covariance matrix as features to classify images (topomaps) created from the brain signals. The signals are recorded during the answering of 2D and 3D questions. The system is used to classify the correct and incorrect answers for both 2D and 3D questions. Using the classification technique, the impacts of 2D and 3D multimedia educational contents on learning, memory retention and recall will be compared. The subjects learn similar 2D and 3D educational contents. Afterwards, subjects are asked 20 multiple-choice questions (MCQs) associated with the contents after thirty minutes (Short-Term Memory) and two months (Long-Term Memory). Eigenvalues features extracted from topomaps images are given to K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers, in order to identify the states of the brain related to incorrect and correct answers. Excellent accuracies obtained by both classifiers and by applying statistical analysis on the results, no significant difference is indicated between 2D and 3D multimedia educational contents on learning, memory retention and recall in both STM and LTM.

The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight


Space is the final frontier for understanding how extreme environments affect human physiology. Following twin astronauts, one of which spent a year-long mission on the International Space Station, Garrett-Bakelman et al. examined molecular and physiological traits that may be affected by time in space (see the Perspective by Löbrich and Jeggo). Sequencing the components of whole blood revealed that the length of telomeres, which is important to maintain in dividing cells and may be related to human aging, changed substantially during space flight and again upon return to Earth. Coupled with changes in DNA methylation in immune cells and cardiovascular and cognitive effects, this study provides a basis to assess the hazards of long-term space habitation. Science, this issue p. eaau8650; see also p. 127 To date, 559 humans have been flown into space, but long-duration ( 300 days) missions are rare (n 8 total). Long-duration missions that will take humans to Mars and beyond are planned ...