Goto

Collaborating Authors

What Is the Naive Classifier for Each Imbalanced Classification Metric?

#artificialintelligence

A common mistake made by beginners is to apply machine learning algorithms to a problem without establishing a performance baseline. A performance baseline provides a minimum score above which a model is considered to have skill on the dataset. It also provides a point of relative improvement for all models evaluated on the dataset. A baseline can be established using a naive classifier, such as predicting one class label for all examples in the test dataset. Another common mistake made by beginners is using classification accuracy as a performance metric on problems that have an imbalanced class distribution.


Step-By-Step Framework for Imbalanced Classification Projects

#artificialintelligence

Classification predictive modeling problems involve predicting a class label for a given set of inputs. It is a challenging problem in general, especially if little is known about the dataset, as there are tens, if not hundreds, of machine learning algorithms to choose from. The problem is made significantly more difficult if the distribution of examples across the classes is imbalanced. This requires the use of specialized methods to either change the dataset or change the learning algorithm to handle the skewed class distribution. A common way to deal with the overwhelm on a new classification project is to use a favorite machine learning algorithm like Random Forest or SMOTE. Another common approach is to scour the research literature for descriptions of vaguely similar problems and attempt to re-implement the algorithms and configurations that are described. These approaches can be effective, although they are hit-or-miss and time-consuming respectively.


How to Calibrate Probabilities for Imbalanced Classification

#artificialintelligence

Many machine learning models are capable of predicting a probability or probability-like scores for class membership. Probabilities provide a required level of granularity for evaluating and comparing models, especially on imbalanced classification problems where tools like ROC Curves are used to interpret predictions and the ROC AUC metric is used to compare model performance, both of which use probabilities. Unfortunately, the probabilities or probability-like scores predicted by many models are not calibrated. This means that they may be over-confident in some cases and under-confident in other cases. Worse still, the severely skewed class distribution present in imbalanced classification tasks may result in even more bias in the predicted probabilities as they over-favor predicting the majority class. As such, it is often a good idea to calibrate the predicted probabilities for nonlinear machine learning models prior to evaluating their performance.


How to Calculate Precision, Recall, and F-Measure for Imbalanced Classification

#artificialintelligence

Classification accuracy is the total number of correct predictions divided by the total number of predictions made for a dataset. As a performance measure, accuracy is inappropriate for imbalanced classification problems. The main reason is that the overwhelming number of examples from the majority class (or classes) will overwhelm the number of examples in the minority class, meaning that even unskillful models can achieve accuracy scores of 90 percent, or 99 percent, depending on how severe the class imbalance happens to be. An alternative to using classification accuracy is to use precision and recall metrics. In this tutorial, you will discover how to calculate and develop an intuition for precision and recall for imbalanced classification.


Oversampling for Imbalanced Learning Based on K-Means and SMOTE

arXiv.org Machine Learning

Learning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification algorithm. Such techniques, called oversamplers, modify the training data, allowing any classifier to be used with class-imbalanced datasets. Many algorithms have been proposed for this task, but most are complex and tend to generate unnecessary noise. This work presents a simple and effective oversampling method based on k-means clustering and SMOTE oversampling, which avoids the generation of noise and effectively overcomes imbalances between and within classes. Empirical results of extensive experiments with 71 datasets show that training data oversampled with the proposed method improves classification results. Moreover, k-means SMOTE consistently outperforms other popular oversampling methods. An implementation is made available in the python programming language.