Goto

Collaborating Authors

On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment

#artificialintelligence

Edited by Michael F. Goodchild, University of California, Santa Barbara, CA, and approved November 22, 2016 (received for review July 20, 2016) Ride-sharing services can provide not only a very personalized mobility experience but also ensure efficiency and sustainability via large-scale ride pooling. Large-scale ride-sharing requires mathematical models and algorithms that can match large groups of riders to a fleet of shared vehicles in real time, a task not fully addressed by current solutions. We present a highly scalable anytime optimal algorithm and experimentally validate its performance using New York City taxi data and a shared vehicle fleet with passenger capacities of up to ten. Our results show that 2,000 vehicles (15% of the taxi fleet) of capacity 10 or 3,000 of capacity 4 can serve 98% of the demand within a mean waiting time of 2.8 min and mean trip delay of 3.5 min. Ride-sharing services are transforming urban mobility by providing timely and convenient transportation to anybody, anywhere, and anytime. Current mathematical models, however, do not fully address the potential of ride-sharing. Recently, a large-scale study highlighted some of the benefits of car pooling but was limited to static routes with two riders per vehicle (optimally) or three (with heuristics).


Language from police body camera footage shows racial disparities in officer respect

@machinelearnbot

Contributed by Jennifer L. Eberhardt, March 26, 2017 (sent for review February 14, 2017; reviewed by James Pennebaker and Tom Tyler) Police officers speak significantly less respectfully to black than to white community members in everyday traffic stops, even after controlling for officer race, infraction severity, stop location, and stop outcome.


IBM Advances Neuromorphic Computing for Deep Learning

#artificialintelligence

Deep learning efforts today are run on standard computer hardware using convolutional neural networks. Indeed the approach has proven powerful by pioneers such as Google and Microsoft. In contrast neuromorphic computing, whose spiking neuron architecture more closely mimics human brain function, has generated less enthusiasm in the deep learning community. Now, work by IBM using its TrueNorth chip as a test case may bring deep learning to neuromorphic architectures. Writing in the Proceedings of the National Academy of Science (PNAS) in August (Convolutional networks for fast, energy-efficient neuromorphic computing), researchers from IBM Research report, "[We] demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, perform inference while preserving the hardware's underlying energy-efficiency and high throughput."


Backpropagation for Energy-Efficient Neuromorphic Computing

Neural Information Processing Systems

Solving real world problems with embedded neural networks requires both training algorithms that achieve high performance and compatible hardware that runs in real time while remaining energy efficient. For the former, deep learning using backpropagation has recently achieved a string of successes across many domains and datasets. For the latter, neuromorphic chips that run spiking neural networks have recently achieved unprecedented energy efficiency. To bring these two advances together, we must first resolve the incompatibility between backpropagation, which uses continuous-output neurons and synaptic weights, and neuromorphic designs, which employ spiking neurons and discrete synapses. Our approach is to treat spikes and discrete synapses as continuous probabilities, which allows training the network using standard backpropagation. The trained network naturally maps to neuromorphic hardware by sampling the probabilities to create one or more networks, which are merged using ensemble averaging. To demonstrate, we trained a sparsely connected network that runs on the TrueNorth chip using the MNIST dataset. With a high performance network (ensemble of $64$), we achieve $99.42\%$ accuracy at $121 \mu$J per image, and with a high efficiency network (ensemble of $1$) we achieve $92.7\%$ accuracy at $0.408 \mu$J per image.


Neuromorphic Deep Learning Machines

arXiv.org Artificial Intelligence

An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated weights are not essential for learning deep representations. Random BP replaces feedback weights with random ones and encourages the network to adjust its feed-forward weights to learn pseudo-inverses of the (random) feedback weights. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations in neuromorphic computing hardware. The rule requires only one addition and two comparisons for each synaptic weight using a two-compartment leaky Integrate & Fire (I&F) neuron, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving nearly identical classification accuracies compared to artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning.