Goto

Collaborating Authors

On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice

arXiv.org Machine Learning

Machine learning algorithms have been used widely in various applications and areas. To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model's performance. It often requires deep knowledge of machine learning algorithms and appropriate hyper-parameter optimization techniques. Although several automatic optimization techniques exist, they have different strengths and drawbacks when applied to different types of problems. In this paper, optimizing the hyper-parameters of common machine learning models is studied. We introduce several state-of-the-art optimization techniques and discuss how to apply them to machine learning algorithms. Many available libraries and frameworks developed for hyper-parameter optimization problems are provided, and some open challenges of hyper-parameter optimization research are also discussed in this paper. Moreover, experiments are conducted on benchmark datasets to compare the performance of different optimization methods and provide practical examples of hyper-parameter optimization. This survey paper will help industrial users, data analysts, and researchers to better develop machine learning models by identifying the proper hyper-parameter configurations effectively.


Bayesian Optimization for Selecting Efficient Machine Learning Models

arXiv.org Machine Learning

The performance of many machine learning models depends on their hyper-parameter settings. Bayesian Optimization has become a successful tool for hyper-parameter optimization of machine learning algorithms, which aims to identify optimal hyper-parameters during an iterative sequential process. However, most of the Bayesian Optimization algorithms are designed to select models for effectiveness only and ignore the important issue of model training efficiency. Given that both model effectiveness and training time are important for real-world applications, models selected for effectiveness may not meet the strict training time requirements necessary to deploy in a production environment. In this work, we present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency. We propose an objective that captures the tradeoff between these two metrics and demonstrate how we can jointly optimize them in a principled Bayesian Optimization framework. Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency while maintaining strong effectiveness as compared to state-of-the-art Bayesian Optimization algorithms.


Learning to Learn without Gradient Descent by Gradient Descent

arXiv.org Machine Learning

We learn recurrent neural network optimizers trained on simple synthetic functions by gradient descent. We show that these learned optimizers exhibit a remarkable degree of transfer in that they can be used to efficiently optimize a broad range of derivative-free black-box functions, including Gaussian process bandits, simple control objectives, global optimization benchmarks and hyper-parameter tuning tasks. Up to the training horizon, the learned optimizers learn to trade-off exploration and exploitation, and compare favourably with heavily engineered Bayesian optimization packages for hyper-parameter tuning.


Algorithms for Advanced Hyper-Parameter Optimization/Tuning - KDnuggets

#artificialintelligence

Most Professional Machine Learning practitioners follow the ML Pipeline as a standard, to keep their work efficient and to keep the flow of work. A pipeline is created to allow data flow from its raw format to some useful information. All sub-fields in this pipeline's modules are equally important for us to produce quality results, and one of them is Hyper-Parameter Tuning. Most of us know the best way to proceed with Hyper-Parameter Tuning is to use the GridSearchCV or RandomSearchCV from the sklearn module. But apart from these algorithms, there are many other Advanced methods for Hyper-Parameter Tuning.


An Empirical Bayes Approach to Optimizing Machine Learning Algorithms

Neural Information Processing Systems

There is rapidly growing interest in using Bayesian optimization to tune model and inference hyperparameters for machine learning algorithms that take a long time to run. For example, Spearmint is a popular software package for selecting the optimal number of layers and learning rate in neural networks. But given that there is uncertainty about which hyperparameters give the best predictive performance, and given that fitting a model for each choice of hyperparameters is costly, it is arguably wasteful to "throw away" all but the best result, as per Bayesian optimization. A related issue is the danger of overfitting the validation data when optimizing many hyperparameters. In this paper, we consider an alternative approach that uses more samples from the hyperparameter selection procedure to average over the uncertainty in model hyperparameters. The resulting approach, empirical Bayes for hyperparameter averaging (EB-Hyp) predicts held-out data better than Bayesian optimization in two experiments on latent Dirichlet allocation and deep latent Gaussian models. EB-Hyp suggests a simpler approach to evaluating and deploying machine learning algorithms that does not require a separate validation data set and hyperparameter selection procedure.