Petit, Maxime, Dellandrea, Emmanuel, Chen, Liming

In robotics, methods and softwares usually require optimizations of hyperparameters in order to be efficient for specific tasks, for instance industrial bin-picking from homogeneous heaps of different objects. We present a developmental framework based on long-term memory and reasoning modules (Bayesian Optimisation, visual similarity and parameters bounds reduction) allowing a robot to use meta-learning mechanism increasing the efficiency of such continuous and constrained parameters optimizations. The new optimization, viewed as a learning for the robot, can take advantage of past experiences (stored in the episodic and procedural memories) to shrink the search space by using reduced parameters bounds computed from the best optimizations realized by the robot with similar tasks of the new one (e.g. bin-picking from an homogenous heap of a similar object, based on visual similarity of objects stored in the semantic memory). As example, we have confronted the system to the constrained optimizations of 9 continuous hyperparameters for a professional software (Kamido) in industrial robotic arm bin-picking tasks, a step that is needed each time to handle correctly new object. We used a simulator to create bin-picking tasks for 8 different objects (7 in simulation and one with real setup, without and with meta-learning with experiences coming from other similar objects) achieving goods results despite a very small optimization budget, with a better performance reached when meta-learning is used (84.3% vs 78.9% of success overall, with a small budget of 30 iterations for each optimization) for every object tested (p-value=0.036).

Khairy, Sami, Shaydulin, Ruslan, Cincio, Lukasz, Alexeev, Yuri, Balaprakash, Prasanna

Quantum computing is a computational paradigm with the potential to outperform classical methods for a variety of problems. Proposed recently, the Quantum Approximate Optimization Algorithm (QAOA) is considered as one of the leading candidates for demonstrating quantum advantage in the near term. QAOA is a variational hybrid quantum-classical algorithm for approximately solving combinatorial optimization problems. The quality of the solution obtained by QAOA for a given problem instance depends on the performance of the classical optimizer used to optimize the variational parameters. In this paper, we formulate the problem of finding optimal QAOA parameters as a learning task in which the knowledge gained from solving training instances can be leveraged to find high-quality solutions for unseen test instances. To this end, we develop two machine-learning-based approaches. Our first approach adopts a reinforcement learning (RL) framework to learn a policy network to optimize QAOA circuits. Our second approach adopts a kernel density estimation (KDE) technique to learn a generative model of optimal QAOA parameters. In both approaches, the training procedure is performed on small-sized problem instances that can be simulated on a classical computer; yet the learned RL policy and the generative model can be used to efficiently solve larger problems. Extensive simulations using the IBM Qiskit Aer quantum circuit simulator demonstrate that our proposed RL- and KDE-based approaches reduce the optimality gap by factors up to 30.15 when compared with other commonly used off-the-shelf optimizers.

Shin, Ahnjae, Kim, Do Yoon, Jeong, Joo Seong, Chun, Byung-Gon

Hyper-parameter optimization is crucial for pushing the accuracy of a deep learning model to its limits. A hyper-parameter optimization job, referred to as a study, involves numerous trials of training a model using different training knobs, and therefore is very computation-heavy, typically taking hours and days to finish. We observe that trials issued from hyper-parameter optimization algorithms often share common hyper-parameter sequence prefixes. Based on this observation, we propose Hippo, a hyper-parameter optimization system that removes redundancy in the training process to reduce the overall amount of computation significantly. Instead of executing each trial independently as in existing hyper-parameter optimization systems, Hippo breaks down the hyper-parameter sequences into stages and merges common stages to form a tree of stages (called a stage-tree), then executes a stage once per tree on a distributed GPU server environment. Hippo is applicable to not only single studies, but multi-study scenarios as well, where multiple studies of the same model and search space can be formulated as trees of stages. Evaluations show that Hippo's stage-based execution strategy outperforms trial-based methods such as Ray Tune for several models and hyper-parameter optimization algorithms, reducing GPU-hours and end-to-end training time significantly.

Schneider, Philipp-Immanuel, Hammerschmidt, Martin, Zschiedrich, Lin, Burger, Sven

Optical scatterometry is a method to measure the size and shape of periodic micro- or nanostructures on surfaces. For this purpose the geometry parameters of the structures are obtained by reproducing experimental measurement results through numerical simulations. We compare the performance of Bayesian optimization to different local minimization algorithms for this numerical optimization problem. Bayesian optimization uses Gaussian-process regression to find promising parameter values. We examine how pre-computed simulation results can be used to train the Gaussian process and to accelerate the optimization.

Model optimization is one of the toughest challenges in the implementation of machine learning solutions. Entire branches of machine learning and deep learning theory have been dedicated to the optimization of models. Hyperparameter optimization in machine learning intends to find the hyperparameters of a given machine learning algorithm that deliver the best performance as measured on a validation set. Hyperparameters, in contrast to model parameters, are set by the machine learning engineer before training. The number of trees in a random forest is a hyperparameter while the weights in a neural network are model parameters learned during training.