Collaborating Authors

The Teaching Dimension of Kernel Perceptron Artificial Intelligence

Algorithmic machine teaching has been studied under the linear setting where exact teaching is possible. However, little is known for teaching nonlinear learners. Here, we establish the sample complexity of teaching, aka teaching dimension, for kernelized perceptrons for different families of feature maps. As a warm-up, we show that the teaching complexity is $\Theta(d)$ for the exact teaching of linear perceptrons in $\mathbb{R}^d$, and $\Theta(d^k)$ for kernel perceptron with a polynomial kernel of order $k$. Furthermore, under certain smooth assumptions on the data distribution, we establish a rigorous bound on the complexity for approximately teaching a Gaussian kernel perceptron. We provide numerical examples of the optimal (approximate) teaching set under several canonical settings for linear, polynomial and Gaussian kernel perceptrons.

Fundamentals in Neural Networks


Beginner level audience that intends to obtain in-depth overview of Artificial Intelligence, Deep Learning, and three major types neural networks: Artificial Neural Networks, Convolutional Neural Networks, and Recurrent Neural Networks. Deep learning (also known as deep structured learning) is part of a broader family of machine learning methods based on artificial neural networks with representation learning. Learning can be supervised, semi-supervised or unsupervised. Deep-learning architectures such as deep neural networks, deep belief networks, deep reinforcement learning, recurrent neural networks and convolutional neural networks have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug design, medical image analysis, material inspection and board game programs, where they have produced results comparable to and in some cases surpassing human expert performance. This course covers the following three sections: (1) Neural Networks, (2) Convolutional Neural Networks, and (3) Recurrent Neural Networks.

Learn Teaching Tools For Effective On Line Teaching



Collaborative and Privacy-Preserving Machine Teaching via Consensus Optimization Machine Learning

In this work, we define a collaborative and privacy-preserving machine teaching paradigm with multiple distributed teachers. We focus on consensus super teaching. It aims at organizing distributed teachers to jointly select a compact while informative training subset from data hosted by the teachers to make a learner learn better. The challenges arise from three perspectives. First, the state-of-the-art pool-based super teaching method applies mixed-integer non-linear programming (MINLP) which does not scale well to very large data sets. Second, it is desirable to restrict data access of the teachers to only their own data during the collaboration stage to mitigate privacy leaks. Finally, the teaching collaboration should be communication-efficient since large communication overheads can cause synchronization delays between teachers. To address these challenges, we formulate collaborative teaching as a consensus and privacy-preserving optimization process to minimize teaching risk. We theoretically demonstrate the necessity of collaboration between teachers for improving the learner's learning. Furthermore, we show that the proposed method enjoys a similar property as the Oracle property of adaptive Lasso. The empirical study illustrates that our teaching method can deliver significantly more accurate teaching results with high speed, while the non-collaborative MINLP-based super teaching becomes prohibitively expensive to compute.

PRODIGY: An integrated architecture for planning and learning


Artificial intelligence has progressed to the point where multiple cognitive capabilities are being integrated into computational architectures, such as SOAR, PRODIGY, THEO, and ICARUS. Learning in PRODIGY occurs at all decision points and integration in PRODIGY is at the knowledge level; the learning and reasoning modules produce mutually interpretable knowledge structures. Issues in architectural design are discussed, providing a context to examine the underlying tenets of the PRODIGY architecture.