Exact Simulation of Noncircular or Improper Complex-Valued Stationary Gaussian Processes using Circulant Embedding

arXiv.org Machine Learning

This paper provides an algorithm for simulating improper (or noncircular) complex-valued stationary Gaussian processes. The technique utilizes recently developed methods for multivariate Gaussian processes from the circulant embedding literature. The method can be performed in $\mathcal{O}(n\log_2 n)$ operations, where $n$ is the length of the desired sequence. The method is exact, except when eigenvalues of prescribed circulant matrices are negative. We evaluate the performance of the algorithm empirically, and provide a practical example where the method is guaranteed to be exact for all $n$, with an improper fractional Gaussian noise process.

Fast Gaussian Process Regression using KD-Trees

Neural Information Processing Systems

This makes Gaussian process regression too slow for large datasets. In this paper, we present a fast approximation method, based on kd-trees, that significantly reduces both the prediction and the training times of Gaussian process regression.

Exact Gaussian Processes on a Million Data Points

arXiv.org Machine Learning

Gaussian processes (GPs) are flexible models with state-of-the-art performance on many impactful applications. However, computational constraints with standard inference procedures have limited exact GPs to problems with fewer than about ten thousand training points, necessitating approximations for larger datasets. In this paper, we develop a scalable approach for exact GPs that leverages multi-GPU parallelization and methods like linear conjugate gradients, accessing the kernel matrix only through matrix multiplication. By partitioning and distributing kernel matrix multiplies, we demonstrate that an exact GP can be trained on over a million points in 3 days using 8 GPUs and can compute predictive means and variances in under a second using 1 GPU at test time. Moreover, we perform the first-ever comparison of exact GPs against state-of-the-art scalable approximations on large-scale regression datasets with $10^4-10^6$ data points, showing dramatic performance improvements.

Nonparametric Bayesian inference on multivariate exponential families

Neural Information Processing Systems

We develop a model by choosing the maximum entropy distribution from the set of models satisfying certain smoothness and independence criteria; we show that inference on this model generalizes local kernel estimation to the context of Bayesian inference on stochastic processes. Our model enables Bayesian inference in contexts when standard techniques like Gaussian process inference are too expensive to apply. Exact inference on our model is possible for any likelihood function from the exponential family. Inference is then highly efficient, requiring only O(log N) time and O(N) space at run time. We demonstrate our algorithm on several problems and show quantifiable improvement in both speed and performance relative to models based on the Gaussian process.

A Sparse Covariance Function for Exact Gaussian Process Inference in Large Datasets

AAAI Conferences

Despite the success of Gaussian processes (GPs) in modelling spatial stochastic processes, dealing with large datasets is still challenging. The problem arises by the need to invert a potentially large covariance matrix during inference. In this paper we address the complexity problem by constructing a new stationary covariance function (Mercer kernel) that naturally provides a sparse covariance matrix. The sparseness of the matrix is defined by hyper-parameters optimised during learning. The new covariance function enables exact GP inference and performs comparatively to the squared-exponential one, at a lower computational cost. This allows the application of GPs to large-scale problems such as ore grade prediction in mining or 3D surface modelling. Experiments show that using the proposed covariance function, very sparse covariance matrices are normally obtained which can be effectively used for faster inference and less memory usage.