Data Science: Supervised Machine Learning in Python

@machinelearnbot

In recent years, we've seen a resurgence in AI, or artificial intelligence, and machine learning. Machine learning has led to some amazing results, like being able to analyze medical images and predict diseases on-par with human experts. Google's AlphaGo program was able to beat a world champion in the strategy game go using deep reinforcement learning. Machine learning is even being used to program self driving cars, which is going to change the automotive industry forever. Imagine a world with drastically reduced car accidents, simply by removing the element of human error.


Data Science: Supervised Machine Learning in Python

@machinelearnbot

In recent years, we've seen a resurgence in AI, or artificial intelligence, and machine learning. Machine learning has led to some amazing results, like being able to analyze medical images and predict diseases on-par with human experts. Google's AlphaGo program was able to beat a world champion in the strategy game go using deep reinforcement learning. Machine learning is even being used to program self driving cars, which is going to change the automotive industry forever. Imagine a world with drastically reduced car accidents, simply by removing the element of human error.


JAG: A Crowdsourcing Framework for Joint Assessment and Peer Grading

AAAI Conferences

Generation and evaluation of crowdsourced content is commonly treated as two separate processes, performed at different times and by two distinct groups of people: content creators and content assessors. As a result, most crowdsourcing tasks follow this template: one group of workers generates content and another group of workers evaluates it. In an educational setting, for example, content creators are traditionally students that submit open-response answers to assignments (e.g., a short answer, a circuit diagram, or a formula) and content assessors are instructors that grade these submissions. Despite the considerable success of peer-grading in massive open online courses (MOOCs), the process of test-taking and grading are still treated as two distinct tasks which typically occur at different times, and require an additional overhead of grader training and incentivization. Inspired by this problem in the context of education, we propose a general crowdsourcing framework that fuses open-response test-taking (content generation) and assessment into a single, streamlined process that appears to students in the form of an explicit test, but where everyone also acts as an implicit grader. The advantages offered by our framework include: a common incentive mechanism for both the creation and evaluation of content, and a probabilistic model that jointly models the processes of contribution and evaluation, facilitating efficient estimation of the quality of the contributions and the competency of the contributors. We demonstrate the effectiveness and limits of our framework via simulations and a real-world user study.


DynaLearn – An Intelligent Learning Environment for Learning Conceptual Knowledge

AI Magazine

Articulating thought in computer-based media is a powerful means for humans to develop their understanding of phenomena. We have created DynaLearn, an Intelligent Learning Environment that allows learners to acquire conceptual knowledge by constructing and simulating qualitative models of how systems behave. DynaLearn uses diagrammatic representations for learners to express their ideas. The environment is equipped with semantic technology components capable of generating knowledge-based feedback, and virtual characters enhancing the interaction with learners. Teachers have created course material, and successful evaluation studies have been performed. This article presents an overview of the DynaLearn system.


Computational Neuroscience Coursera

@machinelearnbot

This course provides an introduction to basic computational methods for understanding what nervous systems do and for determining how they function. We will explore the computational principles governing various aspects of vision, sensory-motor control, learning, and memory. Specific topics that will be covered include representation of information by spiking neurons, processing of information in neural networks, and algorithms for adaptation and learning. We will make use of Matlab/Octave/Python demonstrations and exercises to gain a deeper understanding of concepts and methods introduced in the course. The course is primarily aimed at third- or fourth-year undergraduates and beginning graduate students, as well as professionals and distance learners interested in learning how the brain processes information.