Psychosensory electronic skin technology for future AI and humanoid development

#artificialintelligence

The attempt to mimic human's five senses led to the development of innovative electronic devices such as camera and TV, which are inventions that dramatically changed human life. As a result, many scientists are continuously performing research to imitate tactile, olfactory, and palate senses and tactile sensing is expected to be the next mimetic technology for various reasons. Currently, most tactile sensor researches are focusing on physical mimetic technologies that measure the pressure used for a robot to grab an object, but psychosensory tactile research on how to mimic human tactile feeling such like soft, smooth or rough has a long way to go. As a result, Professor Jae Eun Jang's team developed a tactile sensor that can feel pain and temperature like human through a joint research with Professor Cheil Moon's team in the Department of Brain and Cognitive Science, Professor Ji-woong Choi's team in the Department of Information and Communication Engineering, and Professor Hongsoo Choi's team in the Department of Robotics Engineering. Its key strengths are that it has simplified the sensor structure and can measure pressure and temperature at the same time and can be applied on various tactile systems regardless of the measurement principle of the sensor.


AI: Psychosensory electronic skin technology for future AI development

#artificialintelligence

As a result, many scientists are continuously performing research to imitate tactile, olfactory, and palate senses and tactile sensing is expected to be the next mimetic technology for various reasons. Currently, most tactile sensor researches are focusing on physical mimetic technologies that measure the pressure used for a robot to grab an object, but psychosensory tactile research on how to mimic human tactile feeling such like soft, smooth or rough has a long way to go. As a result, Professor Jae Eun Jang's team developed a tactile sensor that can feel pain and temperature like human through a joint research with Professor Cheil Moon's team in the Department of Brain and Cognitive Science, Professor Ji-woong Choi's team in the Department of Information and Communication Engineering, and Professor Hongsoo Choi's team in the Department of Robotics Engineering. Its key strengths are that it has simplified the sensor structure and can measure pressure and temperature at the same time and can be applied on various tactile systems regardless of the measurement principle of the sensor. For this, the research team focused on zinc oxide nano-wire (ZnO Nano-wire) technology, which was applied as a self-power tactile sensor that does not need a battery thanks to its piezoelectric effect, which generates electrical signals by detecting pressure.


Hairy artificial skin gives robots a sense of touch

ZDNet

Hairy robots could be more sensitive to touch than humans. Researchers at the University of Texas at Arlington have patented a new artificial skin that could help robots collect information about their surroundings by using millions of tiny fibers. The smart skin includes nanowire sensors made from zinc oxide (ZnO). They are much thinner than human hair (0.2 microns, while hair is around 40 microns), and when they brush against something, they can sense temperature changes and surface variations. These nanowires are covered in a protective coating that makes them resistant to chemicals, extreme temperatures, moisture, and shock, so they can be used in harsh environments.


Fingertip sensor gives robot unprecedented dexterity

AITopics Original Links

Researchers at MIT and Northeastern University have equipped a robot with a novel tactile sensor that lets it grasp a USB cable draped freely over a hook and insert it into a USB port. The sensor is an adaptation of a technology called GelSight, which was developed by the lab of Edward Adelson, the John and Dorothy Wilson Professor of Vision Science at MIT, and first described in 2009. The new sensor isn't as sensitive as the original GelSight sensor, which could resolve details on the micrometer scale. But it's smaller -- small enough to fit on a robot's gripper -- and its processing algorithm is faster, so it can give the robot feedback in real time. Industrial robots are capable of remarkable precision when the objects they're manipulating are perfectly positioned in advance.


New robotic material that is MORE sensitive than human skin could revolutionise prosthetic limbs

Daily Mail - Science & tech

Robots of the future could learn to grasp and pick up delicate objects thanks to a new material inspired by human skin. Experts have built a tactile sensor that detects pressure and sends out an electric pulse in response to touch. As well as its applications for intelligent machines, the breakthrough could lead to prosthetic limbs that let people with disabilities feel again. Robots of the future could learn to grasp and pick up delicate objects thanks to a new material inspired by human skin. Experts have built a tactile sensor that detects pressure.