Text Mining Support in Semantic Annotation and Indexing of Multimedia Data

AAAI Conferences

This short paper is describing a demonstrator that is complementing the paper "Towards Cross-Media Feature Extraction" in these proceedings. The demo is exemplifying the use of textual resources, out of which semantic information can be extracted, for supporting the semantic annotation and indexing of associated video material in the soccer domain. Entities and events extracted from textual data are marked-up with semantic classes derived from an ontology modeling the soccer domain. We show further how extracted Audio-Video features by video analysis can be taken into account for additional annotation of specific soccer event types, and how those different types of annotation can be combined.


Opinion: The ugliest side of facial recognition technology

#artificialintelligence

It's no mystery that big data presents a challenge to privacy. But perhaps more alarming is the emergence of technology that combines facial recognition and data analytics to create a powerful surveillance tool. It's a disturbing development that combines the most worrisome aspects of algorithmic and big data technology with the chilling and dangerous threats inherent in facial recognition. A Chicago tech company is advertising its "predictive video" to anticipate behavior "based on the emotional state and personality style of any person in a video." In Russia, the app FindFace gives users "the power to identify total strangers on the street," according to The Atlantic.


Word Predictor from Handwritten Text – Towards Data Science

#artificialintelligence

It's been long since I contributed to the community. I am back to give what was due. But before that, let me tell you what I was up to all this time. The highlights of all these months professionally have been two things. One, I spoke at a data science conference in March (Mumbai edition of WiDS).


Ready or Not, Facial Recognition is Here to Stay Very Thoughtful Deep_In_Depth : Data Science and Deep Learning

#artificialintelligence

This is a PyTorch version of fairseq, a sequence-to-sequence learning toolkit from Facebook AI Research. The original authors of this reimplementation are (in no particular order) Sergey Edunov, Myle Ott, and Sam Gross. The toolkit implements the fully convolutional model described in Convolutional Sequence to Sequence Learning and features multi-GPU training on a single machine as well as fast beam search generation on both CPU and GPU.


A Direct Evolutionary Feature Extraction Algorithm for Classifying High Dimensional Data

AAAI Conferences

Among various feature extraction algorithms, those based on genetic algorithms are promising owing to their potential parallelizability and possible applications in large scale and high dimensional data classification. However, existing genetic algorithm based feature extraction algorithms are either limited in searching optimal projection basis vectors or costly in both time and space complexities and thus not directly applicable to high dimensional data. In this paper, a direct evolutionary feature extraction algorithm is proposed for classifying high-dimensional data. It constructs projection basis vectors using the linear combination of the basis of the search space and the technique of orthogonal complement. It also constrains the search space when seeking for the optimal projection basis vectors. It evaluates individuals according to the classification performance on a subset of the training samples and the generalization ability of the projection basis vectors represented by the individuals. We compared the proposed algorithm with some representative feature extraction algorithms in face recognition, including the evolutionary pursuit algorithm, Eigenfaces, and Fisherfaces. The results on the widely-used Yale and ORL face databases show that the proposed algorithm has an excellent performance in classification while reducing the space complexity by an order of magnitude.