Goto

Collaborating Authors

A Tabu Search-Based Optimization Approach for Process Planning

#artificialintelligence

In this paper, crucial processes in a computer-aided process planning system, such as selecting machining resources, determining set-up plans and sequencing operations of a part, have been considered simultaneously and modelled as a constraint-based optimization problem, and a Tabu search-based approach has been proposed to solve it effectively. In the optimization model, costs of the utilized machines and cutting tools, machine changes, tool changes, set-ups and departure of good manufacturing practices (penalty function) are integrated as an optimization evaluation criterion. A case study, which is used to compare this approach with the genetic algorithm and simulated annealing approaches, is discussed to highlight the advantages of this approach in terms of solution quality, computation efficiency and the robustness of the algorithm.


A Hybrid APM-CPGSO Approach for Constraint Satisfaction Problem Solving: Application to Remote Sensing

arXiv.org Artificial Intelligence

Constraint satisfaction problem (CSP) has been actively used for modeling and solving a wide range of complex real-world problems. However, it has been proven that developing efficient methods for solving CSP, especially for large problems, is very difficult and challenging. Existing complete methods for problem-solving are in most cases unsuitable. Therefore, proposing hybrid CSP-based methods for problem-solving has been of increasing interest in the last decades. This paper aims at proposing a novel approach that combines incomplete and complete CSP methods for problem-solving. The proposed approach takes advantage of the group search algorithm (GSO) and the constraint propagation (CP) methods to solve problems related to the remote sensing field. To the best of our knowledge, this paper represents the first study that proposes a hybridization between an improved version of GSO and CP in the resolution of complex constraint-based problems. Experiments have been conducted for the resolution of object recognition problems in satellite images. Results show good performances in terms of convergence and running time of the proposed CSP-based method compared to existing state-of-the-art methods.


Solving the G-problems in less than 500 iterations: Improved efficient constrained optimization by surrogate modeling and adaptive parameter control

arXiv.org Machine Learning

Constrained optimization of high-dimensional numerical problems plays an important role in many scientific and industrial applications. Function evaluations in many industrial applications are severely limited and no analytical information about objective function and constraint functions is available. For such expensive black-box optimization tasks, the constraint optimization algorithm COBRA was proposed, making use of RBF surrogate modeling for both the objective and the constraint functions. COBRA has shown remarkable success in solving reliably complex benchmark problems in less than 500 function evaluations. Unfortunately, COBRA requires careful adjustment of parameters in order to do so. In this work we present a new self-adjusting algorithm SACOBRA, which is based on COBRA and capable to achieve high-quality results with very few function evaluations and no parameter tuning. It is shown with the help of performance profiles on a set of benchmark problems (G-problems, MOPTA08) that SACOBRA consistently outperforms any COBRA algorithm with fixed parameter setting. We analyze the importance of the several new elements in SACOBRA and find that each element of SACOBRA plays a role to boost up the overall optimization performance. We discuss the reasons behind and get in this way a better understanding of high-quality RBF surrogate modeling.


Enhancing Constraint-Based Multi-Objective Combinatorial Optimization

AAAI Conferences

Minimal Correction Subsets (MCSs) have been successfully applied to find approximate solutions to several real-world single-objective optimization problems. However, only recently have MCSs been used to solve Multi-Objective Combinatorial Optimization (MOCO) problems. In particular, it has been shown that all optimal solutions of MOCO problems with linear objective functions can be found by an MCS enumeration procedure. In this paper, we show that the approach of MCS enumeration can also be applied to MOCO problems where objective functions are divisions of linear expressions. Hence, it is not necessary to use a linear approximation of these objective functions. Additionally, we also propose the integration of diversification techniques on the MCS enumeration process in order to find better approximations of the Pareto front of MOCO problems. Finally, experimental results on the Virtual Machine Consolidation (VMC) problem show the effectiveness of the proposed techniques.


Constraint Solvers for User Interface Layout

arXiv.org Artificial Intelligence

Constraints have played an important role in the construction of GUIs, where they are mainly used to define the layout of the widgets. Resizing behavior is very important in GUIs because areas have domain specific parameters such as form the resizing of windows. If linear objective function is used and window is resized then error is not distributed equally. To distribute the error equally, a quadratic objective function is introduced. Different algorithms are widely used for solving linear constraints and quadratic problems in a variety of different scientific areas. The linear relxation, Kaczmarz, direct and linear programming methods are common methods for solving linear constraints for GUI layout. The interior point and active set methods are most commonly used techniques to solve quadratic programming problems. Current constraint solvers designed for GUI layout do not use interior point methods for solving a quadratic objective function subject to linear equality and inequality constraints. In this paper, performance aspects and the convergence speed of interior point and active set methods are compared along with one most commonly used linear programming method when they are implemented for graphical user interface layout. The performance and convergence of the proposed algorithms are evaluated empirically using randomly generated UI layout specifications of various sizes. The results show that the interior point algorithms perform significantly better than the Simplex method and QOCA-solver, which uses the active set method implementation for solving quadratic optimization.