Collaborating Authors

Google Brain Co-Founder Teams With Foxconn to Bring AI to Factories


Consumers now experience AI mostly through image recognition to help categorize digital photographs and speech recognition that helps power digital voice assistants such as Apple Inc's Siri or But at a press briefing in San Francisco two days before Ng's In many factories, workers look over parts coming off an assembly line for defects. Ng showed a video in which a worker instead put a circuit board beneath a digital camera connected to a computer and the computer identified a defect in the part. Ng said that while typical computer vision systems might require thousands of sample images to become "trained,"'s

AI, Apple and Google


In the last couple of years, magic started happening in AI. Techniques started working, or started working much better, and new techniques have appeared, especially around machine learning ('ML'), and when those were applied to some long-standing and important use cases we started getting dramatically better results. For example, the error rates for image recognition, speech recognition and natural language processing have collapsed to close to human rates, at least on some measurements. So you can say to your phone: 'show me pictures of my dog at the beach' and a speech recognition system turns the audio into text, natural language processing takes the text, works out that this is a photo query and hands it off to your photo app, and your photo app, which has used ML systems to tag your photos with'dog' and'beach', runs a database query and shows you the tagged images. There are really two things going on here - you're using voice to fill in a dialogue box for a query, and that dialogue box can run queries that might not have been possible before.

Applications of artificial intelligence - Wikipedia


Artificial intelligence, defined as intelligence exhibited by machines, has many applications in today's society. More specifically, it is Weak AI, the form of A.I. where programs are developed to perform specific tasks, that is being utilized for a wide range of activities including medical diagnosis, electronic trading, robot control, and remote sensing. AI has been used to develop and advance numerous fields and industries, including finance, healthcare, education, transportation, and more. AI for Good is a movement in which institutions are employing AI to tackle some of the world's greatest economic and social challenges. For example, the University of Southern California launched the Center for Artificial Intelligence in Society, with the goal of using AI to address socially relevant problems such as homelessness. At Stanford, researchers are using AI to analyze satellite images to identify which areas have the highest poverty levels.[1] The Air Operations Division (AOD) uses AI for the rule based expert systems. The AOD has use for artificial intelligence for surrogate operators for combat and training simulators, mission management aids, support systems for tactical decision making, and post processing of the simulator data into symbolic summaries.[2]

Toward Fairness in AI for People with Disabilities: A Research Roadmap Artificial Intelligence

AI technologies have the potential to dramatically impact the lives of people with disabilities (PWD). Indeed, improving the lives of PWD is a motivator for many state-of-the-art AI systems, such as automated speech recognition tools that can caption videos for people who are deaf and hard of hearing, or language prediction algorithms that can augment communication for people with speech or cognitive disabilities. However, widely deployed AI systems may not work properly for PWD, or worse, may actively discriminate against them. These considerations regarding fairness in AI for PWD have thus far received little attention. In this position paper, we identify potential areas of concern regarding how several AI technology categories may impact particular disability constituencies if care is not taken in their design, development, and testing. We intend for this risk assessment of how various classes of AI might interact with various classes of disability to provide a roadmap for future research that is needed to gather data, test these hypotheses, and build more inclusive algorithms.

The IBM 2016 Speaker Recognition System Machine Learning

In this paper we describe the recent advancements made in the IBM i-vector speaker recognition system for conversational speech. In particular, we identify key techniques that contribute to significant improvements in performance of our system, and quantify their contributions. The techniques include: 1) a nearest-neighbor discriminant analysis (NDA) approach that is formulated to alleviate some of the limitations associated with the conventional linear discriminant analysis (LDA) that assumes Gaussian class-conditional distributions, 2) the application of speaker- and channel-adapted features, which are derived from an automatic speech recognition (ASR) system, for speaker recognition, and 3) the use of a deep neural network (DNN) acoustic model with a large number of output units (~10k senones) to compute the frame-level soft alignments required in the i-vector estimation process. We evaluate these techniques on the NIST 2010 speaker recognition evaluation (SRE) extended core conditions involving telephone and microphone trials. Experimental results indicate that: 1) the NDA is more effective (up to 35% relative improvement in terms of EER) than the traditional parametric LDA for speaker recognition, 2) when compared to raw acoustic features (e.g., MFCCs), the ASR speaker-adapted features provide gains in speaker recognition performance, and 3) increasing the number of output units in the DNN acoustic model (i.e., increasing the senone set size from 2k to 10k) provides consistent improvements in performance (for example from 37% to 57% relative EER gains over our baseline GMM i-vector system). To our knowledge, results reported in this paper represent the best performances published to date on the NIST SRE 2010 extended core tasks.