Goto

Collaborating Authors


Mining Meaning from Wikipedia

arXiv.org Artificial Intelligence

Wikipedia is a goldmine of information; not just for its many readers, but also for the growing community of researchers who recognize it as a resource of exceptional scale and utility. It represents a vast investment of manual effort and judgment: a huge, constantly evolving tapestry of concepts and relations that is being applied to a host of tasks. This article provides a comprehensive description of this work. It focuses on research that extracts and makes use of the concepts, relations, facts and descriptions found in Wikipedia, and organizes the work into four broad categories: applying Wikipedia to natural language processing; using it to facilitate information retrieval and information extraction; and as a resource for ontology building. The article addresses how Wikipedia is being used as is, how it is being improved and adapted, and how it is being combined with other structures to create entirely new resources. We identify the research groups and individuals involved, and how their work has developed in the last few years. We provide a comprehensive list of the open-source software they have produced.


The 84 biggest flops, fails, and dead dreams of the decade in tech

#artificialintelligence

The world never changes quite the way you expect. But at The Verge, we've had a front-row seat while technology has permeated every aspect of our lives over the past decade. Some of the resulting moments -- and gadgets -- arguably defined the decade and the world we live in now. But others we ate up with popcorn in hand, marveling at just how incredibly hard they flopped. This is the decade we learned that crowdfunded gadgets can be utter disasters, even if they don't outright steal your hard-earned cash. It's the decade of wearables, tablets, drones and burning batteries, and of ridiculous valuations for companies that were really good at hiding how little they actually had to offer. Here are 84 things that died hard, often hilariously, to bring us where we are today. Everyone was confused by Google's Nexus Q when it debuted in 2012, including The Verge -- which is probably why the bowling ball of a media streamer crashed and burned before it even came to market.


Probabilistic Graphical Models for Credibility Analysis in Evolving Online Communities

arXiv.org Machine Learning

One of the major hurdles preventing the full exploitation of information from online communities is the widespread concern regarding the quality and credibility of user-contributed content. Prior works in this domain operate on a static snapshot of the community, making strong assumptions about the structure of the data (e.g., relational tables), or consider only shallow features for text classification. To address the above limitations, we propose probabilistic graphical models that can leverage the joint interplay between multiple factors in online communities --- like user interactions, community dynamics, and textual content --- to automatically assess the credibility of user-contributed online content, and the expertise of users and their evolution with user-interpretable explanation. To this end, we devise new models based on Conditional Random Fields for different settings like incorporating partial expert knowledge for semi-supervised learning, and handling discrete labels as well as numeric ratings for fine-grained analysis. This enables applications such as extracting reliable side-effects of drugs from user-contributed posts in healthforums, and identifying credible content in news communities. Online communities are dynamic, as users join and leave, adapt to evolving trends, and mature over time. To capture this dynamics, we propose generative models based on Hidden Markov Model, Latent Dirichlet Allocation, and Brownian Motion to trace the continuous evolution of user expertise and their language model over time. This allows us to identify expert users and credible content jointly over time, improving state-of-the-art recommender systems by explicitly considering the maturity of users. This also enables applications such as identifying helpful product reviews, and detecting fake and anomalous reviews with limited information.


USA TODAY Network debuts first VR news show

USATODAY - Tech Top Stories

Thrill seekers go "highlining" in the Arizona desert on the USA TODAY Network "VRtually There" 360 show. LOS ANGELES -- USA TODAY Network debuts a first-of-its kind weekly virtual reality news show Thursday, inviting viewers to take in a 360-degree view of a hot-air balloon festival in New Mexico and to watch high-liners above Arizona's canyons. Called "VRtually There" and co-produced with YouTube, the show's initial content is targeted towards action, along the lines of what's been shown on the USA TODAY YouTube channel in 360, including flying with the Blue Angels and getting into the pit during the Indianapolis 500 race. Ex-National Geographic producer David Hamlin will serve as executive producer. "VRtually" will be available on USA TODAY's mobile app, as well as its VR Stories app, and YouTube, which has exclusivity for the first sixty days from each episode's release.