Goto

Collaborating Authors


Machine Learning, Big Data, And Smart Buildings: A Comprehensive Survey

arXiv.org Machine Learning

Future buildings will offer new convenience, comfort, and efficiency possibilities to their residents. Changes will occur to the way people live as technology involves into people's lives and information processing is fully integrated into their daily living activities and objects. The future expectation of smart buildings includes making the residents' experience as easy and comfortable as possible. The massive streaming data generated and captured by smart building appliances and devices contains valuable information that needs to be mined to facilitate timely actions and better decision making. Machine learning and big data analytics will undoubtedly play a critical role to enable the delivery of such smart services. In this paper, we survey the area of smart building with a special focus on the role of techniques from machine learning and big data analytics. This survey also reviews the current trends and challenges faced in the development of smart building services.


ALCNN: Attention-based Model for Fine-grained Demand Inference of Dock-less Shared Bike in New Cities

arXiv.org Machine Learning

In recent years, dock-less shared bikes have been widely spread across many cities in China and facilitate people's lives. However, at the same time, it also raises many problems about dock-less shared bike management due to the mismatching between demands and real distribution of bikes. Before deploying dock-less shared bikes in a city, companies need to make a plan for dispatching bikes from places having excessive bikes to locations with high demands for providing better services. In this paper, we study the problem of inferring fine-grained bike demands anywhere in a new city before the deployment of bikes. This problem is challenging because new city lacks training data and bike demands vary by both places and time. To solve the problem, we provide various methods to extract discriminative features from multi-source geographic data, such as POI, road networks and nighttime light, for each place. We utilize correlation Principle Component Analysis (coPCA) to deal with extracted features of both old city and new city to realize distribution adaption. Then, we adopt a discrete wavelet transform (DWT) based model to mine daily patterns for each place from fine-grained bike demand. We propose an attention based local CNN model, \textbf{ALCNN}, to infer the daily patterns with latent features from coPCA with multiple CNNs for modeling the influence of neighbor places. In addition, ALCNN merges latent features from multiple CNNs and can select a suitable size of influenced regions. The extensive experiments on real-life datasets show that the proposed approach outperforms competitive methods.


Tensor Analysis and Fusion of Multimodal Brain Images

arXiv.org Machine Learning

Current high-throughput data acquisition technologies probe dynamical systems with different imaging modalities, generating massive data sets at different spatial and temporal resolutions posing challenging problems in multimodal data fusion. A case in point is the attempt to parse out the brain structures and networks that underpin human cognitive processes by analysis of different neuroimaging modalities (functional MRI, EEG, NIRS etc.). We emphasize that the multimodal, multi-scale nature of neuroimaging data is well reflected by a multi-way (tensor) structure where the underlying processes can be summarized by a relatively small number of components or "atoms". We introduce Markov-Penrose diagrams - an integration of Bayesian DAG and tensor network notation in order to analyze these models. These diagrams not only clarify matrix and tensor EEG and fMRI time/frequency analysis and inverse problems, but also help understand multimodal fusion via Multiway Partial Least Squares and Coupled Matrix-Tensor Factorization. We show here, for the first time, that Granger causal analysis of brain networks is a tensor regression problem, thus allowing the atomic decomposition of brain networks. Analysis of EEG and fMRI recordings shows the potential of the methods and suggests their use in other scientific domains.


Using drones, AI and big data, India to draw up digital map with 10 cms resolution

#artificialintelligence

India has initiated a project to digitally map the country with a resolution of 10 centimetres, using drones and technologies such as Artificial Intelligence and big data, a senior government official said on Monday. The herculean task was taken up by the Survey of India, part of the Department of Science and Technology, a few months ago and is planned to be completed in two years, the department's secretary, Prof Ashutosh Sharma said. "Now, we are equipping them [Survey of India] with the latest technologies like drones, artificial intelligence, big data analytics, image processing and continuously operated reference system," he told reporters on the sidelines of an event. Once the project is completed, the data will be available to citizens and to gram panchayats and local bodies, empowering them to use it in decision making and planning process. The survey is currently in progress in Karnataka, Haryana, Maharashtra and the Ganga basin.