Goto

Collaborating Authors

Train longer, generalize better: closing the generalization gap in large batch training of neural networks

Neural Information Processing Systems

Background: Deep learning models are typically trained using stochastic gradient descent or one of its variants. These methods update the weights using their gradient, estimated from a small fraction of the training data. It has been observed that when using large batch sizes there is a persistent degradation in generalization performance - known as the "generalization gap" phenomenon. Identifying the origin of this gap and closing it had remained an open problem. Contributions: We examine the initial high learning rate training phase. We find that the weight distance from its initialization grows logarithmically with the number of weight updates. We therefore propose a "random walk on a random landscape" statistical model which is known to exhibit similar "ultra-slow" diffusion behavior. Following this hypothesis we conducted experiments to show empirically that the "generalization gap" stems from the relatively small number of updates rather than the batch size, and can be completely eliminated by adapting the training regime used. We further investigate different techniques to train models in the large-batch regime and present a novel algorithm named "Ghost Batch Normalization" which enables significant decrease in the generalization gap without increasing the number of updates. To validate our findings we conduct several additional experiments on MNIST, CIFAR-10, CIFAR-100 and ImageNet. Finally, we reassess common practices and beliefs concerning training of deep models and suggest they may not be optimal to achieve good generalization.


Train longer, generalize better: closing the generalization gap in large batch training of neural networks

arXiv.org Machine Learning

Background: Deep learning models are typically trained using stochastic gradient descent or one of its variants. These methods update the weights using their gradient, estimated from a small fraction of the training data. It has been observed that when using large batch sizes there is a persistent degradation in generalization performance - known as the "generalization gap" phenomena. Identifying the origin of this gap and closing it had remained an open problem. Contributions: We examine the initial high learning rate training phase. We find that the weight distance from its initialization grows logarithmically with the number of weight updates. We therefore propose a "random walk on random landscape" statistical model which is known to exhibit similar "ultra-slow" diffusion behavior. Following this hypothesis we conducted experiments to show empirically that the "generalization gap" stems from the relatively small number of updates rather than the batch size, and can be completely eliminated by adapting the training regime used. We further investigate different techniques to train models in the large-batch regime and present a novel algorithm named "Ghost Batch Normalization" which enables significant decrease in the generalization gap without increasing the number of updates. To validate our findings we conduct several additional experiments on MNIST, CIFAR-10, CIFAR-100 and ImageNet. Finally, we reassess common practices and beliefs concerning training of deep models and suggest they may not be optimal to achieve good generalization.


Augment your batch: better training with larger batches

arXiv.org Machine Learning

Large-batch SGD is important for scaling training of deep neural networks. However, without fine-tuning hyperparameter schedules, the generalization of the model may be hampered. We propose to use batch augmentation: replicating instances of samples within the same batch with different data augmentations. Batch augmentation acts as a regularizer and an accelerator, increasing both generalization and performance scaling. We analyze the effect of batch augmentation on gradient variance and show that it empirically improves convergence for a wide variety of deep neural networks and datasets. Our results show that batch augmentation reduces the number of necessary SGD updates to achieve the same accuracy as the state-of-the-art. Overall, this simple yet effective method enables faster training and better generalization by allowing more computational resources to be used concurrently.


Stochastic Weight Averaging in Parallel: Large-Batch Training that Generalizes Well

arXiv.org Machine Learning

We propose Stochastic Weight Averaging in Parallel (SW AP), an algorithm to accelerate DNN training. Our algorithm uses large mini-batches to compute an approximate solution quickly and then refines it by averaging the weights of multiple models computed independently and in parallel. The resulting models generalize equally well as those trained with small mini-batches but are produced in a substantially shorter time. We demonstrate the reduction in training time and the good generalization performance of the resulting models on the computer vision datasets CIFAR10, CIFAR100, and ImageNet. Stochastic gradient descent (SGD) and its variants are the de-facto methods to train deep neural networks (DNNs). Each iteration of SGD computes an estimate of the objective's gradient by sampling a mini-batch of the available training data and computing the gradient of the loss restricted to the sampled data. A popular strategy to accelerate DNN training is to increase the mini-batch size together with the available computational resources. Larger mini-batches produce more precise gradient estimates; these allow for higher learning rates and achieve larger reductions of the training loss per iteration.


Revisiting Small Batch Training for Deep Neural Networks

arXiv.org Machine Learning

Modern deep neural network training is typically based on mini-batch stochastic gradient optimization. While the use of large mini-batches increases the available computational parallelism, small batch training has been shown to provide improved generalization performance and allows a significantly smaller memory footprint, which might also be exploited to improve machine throughput. In this paper, we review common assumptions on learning rate scaling and training duration, as a basis for an experimental comparison of test performance for different mini-batch sizes. We adopt a learning rate that corresponds to a constant average weight update per gradient calculation (i.e., per unit cost of computation), and point out that this results in a variance of the weight updates that increases linearly with the mini-batch size $m$. The collected experimental results for the CIFAR-10, CIFAR-100 and ImageNet datasets show that increasing the mini-batch size progressively reduces the range of learning rates that provide stable convergence and acceptable test performance. On the other hand, small mini-batch sizes provide more up-to-date gradient calculations, which yields more stable and reliable training. The best performance has been consistently obtained for mini-batch sizes between $m = 2$ and $m = 32$, which contrasts with recent work advocating the use of mini-batch sizes in the thousands.