Goto

Collaborating Authors

AI-Powered Microscope Counts Malaria Parasites in Blood Samples

IEEE Spectrum Robotics

Today, a Chinese manufacturer and a venture backed by the Bill & Melinda Gates Foundation will announce plans to commercialize a microscope that uses deep learning algorithms to automatically identify and count malaria parasites in a blood smear within 20 minutes. AI-powered microscopes could speed up diagnosis and standardize detection of malaria at a time when the mosquito-borne disease kills almost half a million people per year. An experimental version of the AI-powered microscope has already shown that it can detect malaria parasites well enough to meet the highest World Health Organization microscopy standard, known as competence level 1. That rating means that it performs on par with well-trained microscopists, although the researchers note that some expert microscopists can still outperform the automated system.


Single Test Image-Based Automated Machine Learning System for Distinguishing between Trait and Diseased Blood Samples

arXiv.org Artificial Intelligence

We introduce a machine learning-based method for fully automated diagnosis of sickle cell disease of poor-quality unstained images of a mobile microscope. Our method is capable of distinguishing between diseased, trait (carrier), and normal samples unlike the previous methods that are limited to distinguishing the normal from the abnormal samples only. The novelty of this method comes from distinguishing the trait and the diseased samples from challenging images that have been captured directly in the field. The proposed approach contains two parts, the segmentation part followed by the classification part. We use a random forest algorithm to segment such challenging images acquitted through a mobile phone-based microscope. Then, we train two classifiers based on a random forest (RF) and a support vector machine (SVM) for classification. The results show superior performances of both of the classifiers not only for images which have been captured in the lab, but also for the ones which have been acquired in the field itself.


Machine learning microscope adapts lighting to improve diagnosis

#artificialintelligence

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal settings needed to complete a given diagnostic task. In the initial proof-of-concept study, the microscope simultaneously developed a lighting pattern and classification system that allowed it to quickly identify red blood cells infected by the malaria parasite more accurately than trained physicians and other machine learning approaches. The results appear online on November 19 in the journal Biomedical Optics Express. "A standard microscope illuminates a sample with the same amount of light coming from all directions, and that lighting has been optimized for human eyes over hundreds of years," said Roarke Horstmeyer, assistant professor of biomedical engineering at Duke. "But computers can see things humans can't," Hortmeyer said. "So not only have we redesigned the hardware to provide a diverse range of lighting options, we've allowed the microscope to optimize the illumination for itself."


Gene therapy lets a French teen dodge sickle cell disease

Associated Press

A French teen who was given gene therapy for sickle cell disease more than two years ago now has enough properly working red blood cells to dodge the effects of the disorder, researchers report.


AI-Powered Microscope Counts Malaria Parasites in Blood Samples

#artificialintelligence

Today, a Chinese manufacturer and a venture backed by Bill Gates will announce plans to commercialize a microscope that uses deep learning algorithms to automatically identify and count malaria parasites in a blood smear within 20 minutes. AI-powered microscopes could speed up diagnosis and standardize detection of malaria at a time when the mosquito-borne disease kills almost half a million people per year. An experimental version of the AI-powered microscope has already shown that it can detect malaria parasites well enough to meet the highest World Health Organization microscopy standard, known as competence level 1. That rating means that it performs on par with well-trained microscopists, although the researchers note that some expert microscopists can still outperform the automated system. That previous research, presented at the International Conference on Computer Vision [pdf] in October, has inspired the Global Good Fund--a partnership between the company Intellectual Ventures and Bill Gates--and a Chinese microscope manufacturer called Motic to take the next big commercialization step.