Bayesian deep neural networks for low-cost neurophysiological markers of Alzheimer's disease severity

arXiv.org Machine Learning

As societies around the world are ageing, the number of Alzheimer's disease (AD) patients is rapidly increasing. To date, no low-cost, non-invasive biomarkers have been established to advance the objectivization of AD diagnosis and progression assessment. Here, we utilize Bayesian neural networks to develop a multivariate predictor for AD severity using a wide range of quantitative EEG (QEEG) markers. The Bayesian treatment of neural networks both automatically controls model complexity and provides a predictive distribution over the target function, giving uncertainty bounds for our regression task. It is therefore well suited to clinical neuroscience, where data sets are typically sparse and practitioners require a precise assessment of the predictive uncertainty. We use data of one of the largest prospective AD EEG trials ever conducted to demonstrate the potential of Bayesian deep learning in this domain, while comparing two distinct Bayesian neural network approaches, i.e., Monte Carlo dropout and Hamiltonian Monte Carlo.


PyData Carolinas 2016 Presentation: Deep Finch? A Continued Comparison of Machine Learning Models to Label Birdsong Syllables

#artificialintelligence

Songbirds provide a model system that neuroscientists use to understand how the brain learns and controls speech and similar skills. Much like infants learning to speak from their parents, songbirds learn their song from a tutor and practice it millions of times before reaching maturity. Also like humans, songbirds have evolved special brain regions for learning and producing their vocalizations. These newly-evolved brain regions in songbirds, known as the song system, are found within broader brain areas shared by birds and humans across evolution. So by studying how the song system works, we can learn about our own brains.


Improving Variational Auto-Encoders using Householder Flow

arXiv.org Machine Learning

Variational auto-encoders (VAE) are scalable and powerful generative models. However, the choice of the variational posterior determines tractability and flexibility of the VAE. Commonly, latent variables are modeled using the normal distribution with a diagonal covariance matrix. This results in computational efficiency but typically it is not flexible enough to match the true posterior distribution. One fashion of enriching the variational posterior distribution is application of normalizing flows, i.e., a series of invertible transformations to latent variables with a simple posterior. In this paper, we follow this line of thinking and propose a volume-preserving flow that uses a series of Householder transformations. We show empirically on MNIST dataset and histopathology data that the proposed flow allows to obtain more flexible variational posterior and competitive results comparing to other normalizing flows.


IBM is funding new Watson AI lab at MIT with $240 Million

#artificialintelligence

IBM said on Thursday it will spend $240 million over the next decade to fund a new artificial intelligence research lab at the Massachusetts Institute of Technology. The resulting MIT–IBM Watson AI Lab will focus on a handful of key AI areas including the development of new "deep learning" algorithms. Deep learning is a subset of AI that aims to bring human-like learning capabilities to computers so they can operate more autonomously. The Cambridge, Mass.-based lab will be led by Dario Gil, vice president of AI for IBM Research and Anantha Chandrakasan, dean of MIT's engineering school. It will draw upon about 100 researchers from IBM (ibm) itself and the university.


Learning to Exploit Invariances in Clinical Time-Series Data using Sequence Transformer Networks

arXiv.org Machine Learning

Recently, researchers have started applying convolutional neural networks (CNNs) with one-dimensional convolutions to clinical tasks involving time-series data. This is due, in part, to their computational efficiency, relative to recurrent neural networks and their ability to efficiently exploit certain temporal invariances, (e.g., phase invariance). However, it is well-established that clinical data may exhibit many other types of invariances (e.g., scaling). While preprocessing techniques, (e.g., dynamic time warping) may successfully transform and align inputs, their use often requires one to identify the types of invariances in advance. In contrast, we propose the use of Sequence Transformer Networks, an end-to-end trainable architecture that learns to identify and account for invariances in clinical time-series data. Applied to the task of predicting in-hospital mortality, our proposed approach achieves an improvement in the area under the receiver operating characteristic curve (AUROC) relative to a baseline CNN (AUROC=0.851 vs. AUROC=0.838). Our results suggest that a variety of valuable invariances can be learned directly from the data.