Questions To Ask When Moving Machine Learning From Practice to Production

#artificialintelligence

With growing interest in neural networks and deep learning, individuals and companies are claiming ever-increasing adoption rates of artificial intelligence into their daily workflows and product offerings. Coupled with breakneck speeds in AI-research, the new wave of popularity shows a lot of promise for solving some of the harder problems out there. That said, I feel that this field suffers from a gulf between appreciating these developments and subsequently deploying them to solve "real-world" tasks. A number of frameworks, tutorials and guides have popped up to democratize machine learning, but the steps that they prescribe often don't align with the fuzzier problems that need to be solved. This post is a collection of questions (with some (maybe even incorrect) answers) that are worth thinking about when applying machine learning in production.


Questions To Ask When Moving Machine Learning From Practice to Production

#artificialintelligence

With growing interest in neural networks and deep learning, individuals and companies are claiming ever-increasing adoption rates of artificial intelligence into their daily workflows and product offerings. Coupled with breakneck speeds in AI-research, the new wave of popularity shows a lot of promise for solving some of the harder problems out there. That said, I feel that this field suffers from a gulf between appreciating these developments and subsequently deploying them to solve "real-world" tasks. A number of frameworks, tutorials and guides have popped up to democratize machine learning, but the steps that they prescribe often don't align with the fuzzier problems that need to be solved. This post is a collection of questions (with some (maybe even incorrect) answers) that are worth thinking about when applying machine learning in production.


How to Deploy Machine Learning Models

#artificialintelligence

The deployment of machine learning models is the process for making your models available in production environments, where they can provide predictions to other software systems. It is only once models are deployed to production that they start adding value, making deployment a crucial step. However, there is complexity in the deployment of machine learning models. This post aims to at the very least make you aware of where this complexity comes from, and I'm also hoping it will provide you with useful tools and heuristics to combat this complexity. If it's code, step-by-step tutorials and example projects you are looking for, you might be interested in the Udemy Course "Deployment of Machine Learning Models".


How to Deploy Machine Learning Models: The Ultimate Guide

#artificialintelligence

The deployment of machine learning models is the process for making your models available in production environments, where they can provide predictions to other software systems. It is only once models are deployed to production that they start adding value, making deployment a crucial step. However, there is complexity in the deployment of machine learning models. This post aims to at the very least make you aware of where this complexity comes from, and I'm also hoping it will provide you with useful tools and heuristics to combat this complexity. If it's code, step-by-step tutorials and example projects you are looking for, you might be interested in the Udemy Course "Deployment of Machine Learning Models".


Artificial Intelligence and Data Science Advances in 2018 and Trends for 2019

#artificialintelligence

The insane pre-holiday shopping is behind us, along with celebrations, and personal to-do lists for the next 12 months. So, let's analyze the data science and artificial intelligence accomplishments and events of the past year. We talked with experts from Booking.com, Wolfram Research, BetConstruct, and other data science specialists who shared their thoughts about opportunities as well as their influence on business, research, and everyday lives for both industries. Experts have different points of view on whether 2018 was rich in important achievements and events. No recent achievements can compete with inventions of a multilayer perceptron (MLP), neural net training techniques like backpropagation and backpropagation through time (BPTT), residual networks, the introduction of Generative Adversarial Networks (GANs), and deep Q-learning networks (DQN). "So, looking back to memorable ones I listed before, there weren't'brand new' accomplishments in 2018," summarizes Oleksandr.