Maximum entropy models capture melodic styles Machine Learning

We introduce a Maximum Entropy model able to capture the statistics of melodies in music. The model can be used to generate new melodies that emulate the style of the musical corpus which was used to train it. Instead of using the $n-$body interactions of $(n-1)-$order Markov models, traditionally used in automatic music generation, we use a $k-$nearest neighbour model with pairwise interactions only. In that way, we keep the number of parameters low and avoid over-fitting problems typical of Markov models. We show that long-range musical phrases don't need to be explicitly enforced using high-order Markov interactions, but can instead emerge from multiple, competing, pairwise interactions. We validate our Maximum Entropy model by contrasting how much the generated sequences capture the style of the original corpus without plagiarizing it. To this end we use a data-compression approach to discriminate the levels of borrowing and innovation featured by the artificial sequences. The results show that our modelling scheme outperforms both fixed-order and variable-order Markov models. This shows that, despite being based only on pairwise interactions, this Maximum Entropy scheme opens the possibility to generate musically sensible alterations of the original phrases, providing a way to generate innovation.

Delta TFIDF: An Improved Feature Space for Sentiment Analysis

AAAI Conferences

Mining opinions and sentiment from social networking sites is a popular application for social media systems. Common approaches use a machine learning system with a bag of words feature set. We present Delta TFIDF, an intuitive general purpose technique to efficiently weight word scores before classification. Delta TFIDF is easy to compute, implement, and understand. We use Support Vector Machines to show that Delta TFIDF significantly improves accuracy for sentiment analysis problems using three well known data sets.

Machine Learning:Supervised Learning Part 1a of 3 - YouTube


This class is offered as CS7641 at Georgia Tech where it is a part of the Online Masters Degree (OMS). Taking this course here will not earn credit towards the OMS degree. Machine Learning is a graduate-level course covering the area of Artificial Intelligence concerned with computer programs that modify and improve their performance through experiences. The first part of the course covers Supervised Learning, a machine learning task that makes it possible for your phone to recognize your voice, your email to filter spam, and for computers to learn a bunch of other cool stuff. In part two, you will learn about Unsupervised Learning.

k-nearest neighbor algorithm using Python


In machine learning, you may often wish to build predictors that allows to classify things into categories based on some set of associated values. For example, it is possible to provide a diagnosis to a patient based on data from previous patients. Many algorithms have been developed for automated classification, and common ones include random forests, support vector machines, Naïve Bayes classifiers, and many types of neural networks. To get a feel for how classification works, we take a simple example of a classification algorithm – k-Nearest Neighbours (kNN) – and build it from scratch in Python 2. You can use a mostly imperative style of coding, rather than a declarative/functional one with lambda functions and list comprehensions to keep things simple if you are starting with Python. Here, we will provide an introduction to the latter approach.

Wikitop: Using Wikipedia Category Network to Generate Topic Trees

AAAI Conferences

Automated topic identification is an essential component invarious information retrieval and knowledge representationtasks such as automated summary generation, categorization search and document indexing. In this paper, we present the Wikitop system to automatically generate topic trees from the input text by performing hierarchical classification using the Wikipedia Category Network (WCN). Our preliminary results over a collection of 125 articles are encouraging and show potential of a robust methodology for automated topic tree generation.