Collaborating Authors

Ten Ways the Precautionary Principle Undermines Progress in Artificial Intelligence


Artificial intelligence (AI) has the potential to deliver significant social and economic benefits, including reducing accidental deaths and injuries, making new scientific discoveries, and increasing productivity.[1] However, an increasing number of activists, scholars, and pundits see AI as inherently risky, creating substantial negative impacts such as eliminating jobs, eroding personal liberties, and reducing human intelligence.[2] Some even see AI as dehumanizing, dystopian, and a threat to humanity.[3] As such, the world is dividing into two camps regarding AI: those who support the technology and those who oppose it. Unfortunately, the latter camp is increasingly dominating AI discussions, not just in the United States, but in many nations around the world. There should be no doubt that nations that tilt toward fear rather than optimism are more likely to put in place policies and practices that limit AI development and adoption, which will hurt their economic growth, social ...

Towards a Framework for Certification of Reliable Autonomous Systems Artificial Intelligence

The capability and spread of such systems have reached the point where they are beginning to touch much of everyday life. However, regulators grapple with how to deal with autonomous systems, for example how could we certify an Unmanned Aerial System for autonomous use in civilian airspace? We here analyse what is needed in order to provide verified reliable behaviour of an autonomous system, analyse what can be done as the state-of-the-art in automated verification, and propose a roadmap towards developing regulatory guidelines, including articulating challenges to researchers, to engineers, and to regulators. Case studies in seven distinct domains illustrate the article. Keywords: autonomous systems; certification; verification; Artificial Intelligence 1 Introduction Since the dawn of human history, humans have designed, implemented and adopted tools to make it easier to perform tasks, often improving efficiency, safety, or security.

Autonomous Target Search with Multiple Coordinated UAVs

Journal of Artificial Intelligence Research

Search and tracking is the problem of locating a moving target and following it to its destination. In this work, we consider a scenario in which the target moves across a large geographical area by following a road network and the search is performed by a team of unmanned aerial vehicles (UA Vs). We formulate search and tracking as a combinatorial optimization problem and prove that the objective function is submodular. We exploit this property to devise a greedy algorithm. Although this algorithm does not offer strong theoretical guarantees because of the presence of temporal constraints that limit the feasibility of the solutions, it presents remarkably good performance, especially when several UA Vs are available for the mission. As the greedy algorithm suffers when resources are scarce, we investigate two alternative optimization techniques: Constraint Programming (CP) and AI planning. Both approaches struggle to cope with large problems, and so we strengthen them by leveraging the greedy algorithm. We use the greedy solution to warm start the CP model and to devise a domain-dependent heuristic for planning. Our extensive experimental evaluation studies the scalability of the different techniques and identifies the conditions under which one approach becomes preferable to the others.

Efficient Large-Scale Multi-Drone Delivery Using Transit Networks Artificial Intelligence

We consider the problem of controlling a large fleet of drones to deliver packages simultaneously across broad urban areas. To conserve their limited flight range, drones can seamlessly hop between and ride on top of public transit vehicles (e.g., buses and trams). We design a novel comprehensive algorithmic framework that strives to minimize the maximum time to complete any delivery. We address the multifaceted complexity of the problem through a two-layer approach. First, the upper layer assigns drones to package delivery sequences with a provably near-optimal polynomial-time task allocation algorithm. Then, the lower layer executes the allocation by periodically routing the fleet over the transit network while employing efficient bounded-suboptimal multi-agent pathfinding techniques tailored to our setting. We present extensive experiments supporting the efficiency of our approach on settings with up to $200$ drones, $5000$ packages, and large transit networks of up to $8000$ stops in San Francisco and the Washington DC area. Our results show that the framework can compute solutions within a few seconds (up to $2$ minutes for the largest settings) on commodity hardware, and that drones travel up to $450 \%$ of their flight range by using public transit.