Goto

Collaborating Authors

Driving-Signal Aware Full-Body Avatars

arXiv.org Artificial Intelligence

We present a learning-based method for building driving-signal aware full-body avatars. Our model is a conditional variational autoencoder that can be animated with incomplete driving signals, such as human pose and facial keypoints, and produces a high-quality representation of human geometry and view-dependent appearance. The core intuition behind our method is that better drivability and generalization can be achieved by disentangling the driving signals and remaining generative factors, which are not available during animation. To this end, we explicitly account for information deficiency in the driving signal by introducing a latent space that exclusively captures the remaining information, thus enabling the imputation of the missing factors required during full-body animation, while remaining faithful to the driving signal. We also propose a learnable localized compression for the driving signal which promotes better generalization, and helps minimize the influence of global chance-correlations often found in real datasets. For a given driving signal, the resulting variational model produces a compact space of uncertainty for missing factors that allows for an imputation strategy best suited to a particular application. We demonstrate the efficacy of our approach on the challenging problem of full-body animation for virtual telepresence with driving signals acquired from minimal sensors placed in the environment and mounted on a VR-headset.


Facebook shows off creepy VR avatars that look and move 'exactly like you'

Daily Mail - Science & tech

Not too far in the future, you may be able to communicate with lifelike recreations of far-flung relatives that appear to be standing right in front of you. Facebook's Reality Labs research division is trying to make this prospect a reality and the latest results of its work are pretty convincing. In a series of videos, the lifelike floating heads, called'Codec Avatars,' can be seen conversing with one another, as their real facial expressions are replicated on VR faces in second-by-second detail. Users enter one of Facebook Reality Labs' capture studios, which are packed with cameras and microphones. One of the capture studios has 1,700 microphones to record immersive sound.


Deep Semantic Manipulation of Facial Videos

arXiv.org Artificial Intelligence

Editing and manipulating facial features in videos is an interesting and important field of research with a plethora of applications, ranging from movie post-production and visual effects to realistic avatars for video games and virtual assistants. To the best of our knowledge, this paper proposes the first method to perform photorealistic manipulation of facial expressions in videos. Our method supports semantic video manipulation based on neural rendering and 3D-based facial expression modelling. We focus on interactive manipulation of the videos by altering and controlling the facial expressions, achieving promising photorealistic results. The proposed method is based on a disentangled representation and estimation of the 3D facial shape and activity, providing the user with intuitive and easy-to-use control of the facial expressions in the input video. We also introduce a user-friendly, interactive AI tool that processes human-readable semantic labels about the desired emotion manipulations in specific parts of the input video and synthesizes photorealistic manipulated videos. We achieve that by mapping the emotion labels to valence-arousal (VA) values, which in turn are mapped to disentangled 3D facial expressions through an especially designed and trained expression decoder network. The paper presents detailed qualitative and quantitative experiments, which demonstrate the effectiveness of our system and the promising results it achieves. Additional results and videos can be found at the supplementary material (https://github.com/Girish-03/DeepSemManipulation).


Deep Video Portraits

arXiv.org Artificial Intelligence

We present a novel approach that enables photo-realistic re-animation of portrait videos using only an input video. In contrast to existing approaches that are restricted to manipulations of facial expressions only, we are the first to transfer the full 3D head position, head rotation, face expression, eye gaze, and eye blinking from a source actor to a portrait video of a target actor. The core of our approach is a generative neural network with a novel space-time architecture. The network takes as input synthetic renderings of a parametric face model, based on which it predicts photo-realistic video frames for a given target actor. The realism in this rendering-to-video transfer is achieved by careful adversarial training, and as a result, we can create modified target videos that mimic the behavior of the synthetically-created input. In order to enable source-to-target video re-animation, we render a synthetic target video with the reconstructed head animation parameters from a source video, and feed it into the trained network -- thus taking full control of the target. With the ability to freely recombine source and target parameters, we are able to demonstrate a large variety of video rewrite applications without explicitly modeling hair, body or background. For instance, we can reenact the full head using interactive user-controlled editing, and realize high-fidelity visual dubbing. To demonstrate the high quality of our output, we conduct an extensive series of experiments and evaluations, where for instance a user study shows that our video edits are hard to detect.


Learning to Deblur and Rotate Motion-Blurred Faces

arXiv.org Artificial Intelligence

We propose a solution to the novel task of rendering sharp videos from new viewpoints from a single motion-blurred image of a face. Our method handles the complexity of face blur by implicitly learning the geometry and motion of faces through the joint training on three large datasets: FFHQ and 300VW, which are publicly available, and a new Bern Multi-View Face Dataset (BMFD) that we built. The first two datasets provide a large variety of faces and allow our model to generalize better. BMFD instead allows us to introduce multi-view constraints, which are crucial to synthesizing sharp videos from a new camera view. It consists of high frame rate synchronized videos from multiple views of several subjects displaying a wide range of facial expressions. We use the high frame rate videos to simulate realistic motion blur through averaging. Thanks to this dataset, we train a neural network to reconstruct a 3D video representation from a single image and the corresponding face gaze. We then provide a camera viewpoint relative to the estimated gaze and the blurry image as input to an encoder-decoder network to generate a video of sharp frames with a novel camera viewpoint. We demonstrate our approach on test subjects of our multi-view dataset and VIDTIMIT.