Collaborating Authors

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.

ALCNN: Attention-based Model for Fine-grained Demand Inference of Dock-less Shared Bike in New Cities Machine Learning

In recent years, dock-less shared bikes have been widely spread across many cities in China and facilitate people's lives. However, at the same time, it also raises many problems about dock-less shared bike management due to the mismatching between demands and real distribution of bikes. Before deploying dock-less shared bikes in a city, companies need to make a plan for dispatching bikes from places having excessive bikes to locations with high demands for providing better services. In this paper, we study the problem of inferring fine-grained bike demands anywhere in a new city before the deployment of bikes. This problem is challenging because new city lacks training data and bike demands vary by both places and time. To solve the problem, we provide various methods to extract discriminative features from multi-source geographic data, such as POI, road networks and nighttime light, for each place. We utilize correlation Principle Component Analysis (coPCA) to deal with extracted features of both old city and new city to realize distribution adaption. Then, we adopt a discrete wavelet transform (DWT) based model to mine daily patterns for each place from fine-grained bike demand. We propose an attention based local CNN model, \textbf{ALCNN}, to infer the daily patterns with latent features from coPCA with multiple CNNs for modeling the influence of neighbor places. In addition, ALCNN merges latent features from multiple CNNs and can select a suitable size of influenced regions. The extensive experiments on real-life datasets show that the proposed approach outperforms competitive methods.

GPT-3 Creative Fiction


What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.

A Game Theoretical Error-Correction Framework for Secure Traffic-Sign Classification Machine Learning

We introduce a game theoretical error-correction framework to design classification algorithms that are reliable even in adversarial environments, with a specific focus on traffic-sign classification. Machine learning algorithms possess inherent vulnerabilities against maliciously crafted inputs especially at high dimensional input spaces. We seek to achieve reliable and timely performance in classification by redesigning the input space physically to significantly lower dimensions. Traffic-sign classification is an important use-case enabling the redesign of the inputs since traffic-signs have already been designed for their easy recognition by human drivers. We encode the original input samples to, e.g., strings of bits, through error-correction methods that can provide certain distance guarantees in-between any two different encoded inputs. And we model the interaction between the defense and the adversary as a game. Then, we analyze the underlying game using the concept of hierarchical equilibrium, where the defense strategies are designed by taking into account the best possible attack against them. At large scale, for computational simplicity, we provide an approximate solution, where we transform the problem into an efficient linear program with substantially small size compared to the original size of the entire input space. Finally, we examine the performance of the proposed scheme over different traffic-sign classification scenarios.

Mining User Behaviour from Smartphone data, a literature review Machine Learning

To study users' travel behaviour and travel time between origin and destination, researchers employ travel surveys. Although there is consensus in the field about the potential, after over ten years of research and field experimentation, Smartphone-based travel surveys still did not take off to a large scale. Here, computer intelligence algorithms take the role that operators have in Traditional Travel Surveys; since we train each algorithm on data, performances rest on the data quality, thus on the ground truth. Inaccurate validations affect negatively: labels, algorithms' training, travel diaries precision, and therefore data validation, within a very critical loop. Interestingly, boundaries are proven burdensome to push even for Machine Learning methods. To support optimal investment decisions for practitioners, we expose the drivers they should consider when assessing what they need against what they get. This paper highlights and examines the critical aspects of the underlying research and provides some recommendations: (i) from the device perspective, on the main physical limitations; (ii) from the application perspective, the methodological framework deployed for the automatic generation of travel diaries; (iii)from the ground truth perspective, the relationship between user interaction, methods, and data.