Collaborating Authors

r/MachineLearning - [N] Stable-Baselines v2.0.0 Released


Has anyone tried to use Stable-Baselines? How does it compare to the official Baselines from OpenAI in your experience? Stable Baselines is a set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines. You can read a detailed presentation of Stable Baselines in the Medium article. These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of.

Safe Policy Improvement by Minimizing Robust Baseline Regret

Neural Information Processing Systems

An important problem in sequential decision-making under uncertainty is to use limited data to compute a safe policy, i.e., a policy that is guaranteed to perform at least as well as a given baseline strategy. In this paper, we develop and analyze a new model-based approach to compute a safe policy when we have access to an inaccurate dynamics model of the system with known accuracy guarantees. Our proposed robust method uses this (inaccurate) model to directly minimize the (negative) regret w.r.t. the baseline policy. Contrary to the existing approaches, minimizing the regret allows one to improve the baseline policy in states with accurate dynamics and seamlessly fall back to the baseline policy, otherwise. We show that our formulation is NP-hard and propose an approximate algorithm.

Safe Policy Improvement with an Estimated Baseline Policy Artificial Intelligence

Previous work has shown the unreliability of existing algorithms in the batch Reinforcement Learning setting, and proposed the theoretically-grounded Safe Policy Improvement with Baseline Bootstrapping (SPIBB) fix: reproduce the baseline policy in the uncertain state-action pairs, in order to control the variance on the trained policy performance. However, in many real-world applications such as dialogue systems, pharmaceutical tests or crop management, data is collected under human supervision and the baseline remains unknown. In this paper, we apply SPIBB algorithms with a baseline estimate built from the data. We formally show safe policy improvement guarantees over the true baseline even without direct access to it. Our empirical experiments on finite and continuous states tasks support the theoretical findings. It shows little loss of performance in comparison with SPIBB when the baseline policy is given, and more importantly, drastically and significantly outperforms competing algorithms both in safe policy improvement, and in average performance.

Learning Causal Structures Using Regression Invariance

Neural Information Processing Systems

We study causal discovery in a multi-environment setting, in which the functional relations for producing the variables from their direct causes remain the same across environments, while the distribution of exogenous noises may vary. We introduce the idea of using the invariance of the functional relations of the variables to their causes across a set of environments for structure learning. We define a notion of completeness for a causal inference algorithm in this setting and prove the existence of such algorithm by proposing the baseline algorithm. Additionally, we present an alternate algorithm that has significantly improved computational and sample complexity compared to the baseline algorithm. Experiment results show that the proposed algorithm outperforms the other existing algorithms.

Intelligent Trainer for Model-Based Reinforcement Learning Machine Learning

Model-based deep reinforcement learning (DRL) algorithm uses the sampled data from a real environment to learn the underlying system dynamics to construct an approximate cyber environment. By using the synthesized data generated from the cyber environment to train the target controller, the training cost can be reduced significantly. In current research, issues such as the applicability of approximate model and the strategy to sample and train from the real and cyber environment have not been fully investigated. To address these issues, we propose to utilize an intelligent trainer to properly use the approximate model and control the sampling and training procedure in the model-based DRL. To do so, we package the training process of a model-based DRL as a standard RL environment, and design an RL trainer to control the training process. The trainer has three control actions: the first action controls where to sample in the real and cyber environment; the second action determines how many data should be sampled from the cyber environment and the third action controls how many times the cyber data should be used to train the target controller. These actions would be controlled manually if without the trainer. The proposed framework is evaluated on five different tasks of OpenAI gym and the test results show that the proposed trainer achieves significant better performance than a fixed parameter model-based RL baseline algorithm. In addition, we compare the performance of the intelligent trainer to a random trainer and prove that the intelligent trainer can indeed learn on the fly. The proposed training framework can be extended to more control actions with more sophisticated trainer design to further reduce the tweak cost of model-based RL algorithms.