Goto

Collaborating Authors

A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.



Artificial intelligence - Wikipedia, the free encyclopedia

#artificialintelligence

Artificial intelligence (AI) is intelligence exhibited by machines. In computer science, an ideal "intelligent" machine is a flexible rational agent that perceives its environment and takes actions that maximize its chance of success at some goal.[1] Colloquially, the term "artificial intelligence" is applied when a machine mimics "cognitive" functions that humans associate with other human minds, such as "learning" and "problem solving".[2] As machines become increasingly capable, facilities once thought to require intelligence are removed from the definition. For example, optical character recognition is no longer perceived as an exemplar of "artificial intelligence" having become a routine technology.[3] Capabilities still classified as AI include advanced Chess and Go systems and self-driving cars. AI research is divided into subfields[4] that focus on specific problems or on specific approaches or on the use of a particular tool or towards satisfying particular applications. The central problems (or goals) of AI research include reasoning, knowledge, planning, learning, natural language processing (communication), perception and the ability to move and manipulate objects.[5] General intelligence is among the field's long-term goals.[6] Approaches include statistical methods, computational intelligence, soft computing (e.g. machine learning), and traditional symbolic AI. Many tools are used in AI, including versions of search and mathematical optimization, logic, methods based on probability and economics. The AI field draws upon computer science, mathematics, psychology, linguistics, philosophy, neuroscience and artificial psychology. The field was founded on the claim that human intelligence "can be so precisely described that a machine can be made to simulate it."[7] This raises philosophical arguments about the nature of the mind and the ethics of creating artificial beings endowed with human-like intelligence, issues which have been explored by myth, fiction and philosophy since antiquity.[8] Attempts to create artificial intelligence has experienced many setbacks, including the ALPAC report of 1966, the abandonment of perceptrons in 1970, the Lighthill Report of 1973 and the collapse of the Lisp machine market in 1987. In the twenty-first century AI techniques became an essential part of the technology industry, helping to solve many challenging problems in computer science.[9]


Meet the Woman Pioneering Work To Make AI Emotionally Intelligent

#artificialintelligence

Humans are already forming relationships with their artificial intelligence (AI) assistants, so we should make that technology as emotionally aware as possible by teaching it to respond to our feelings. That is the premise of Rana el Kaliouby, cofounder and CEO of Affectiva, an MIT spinout company that sells emotion recognition technology based on her computer science PhD, which she spent building the first ever computer that can recognise emotions. The machine learning-based software uses a camera or webcam to identify parts of human faces (eyebrows, the corners of eyes, etc), classify expressions and map them onto emotions like joy, disgust, surprise, anger, and so on, in real time. "We are getting lots of interest around chatbots, self-driving cars, anything with a conversational interface. If it's interfacing with a human it needs social and emotional skills.


Networked Intelligence: Towards Autonomous Cyber Physical Systems

arXiv.org Artificial Intelligence

Developing intelligent systems requires combining results from both industry and academia. In this report you find an overview of relevant research fields and industrially applicable technologies for building very large scale cyber physical systems. A concept architecture is used to illustrate how existing pieces may fit together, and the maturity of the subsystems is estimated. The goal is to structure the developments and the challenge of machine intelligence for Consumer and Industrial Internet technologists, cyber physical systems researchers and people interested in the convergence of data & Internet of Things. It can be used for planning developments of intelligent systems.