Collaborating Authors

Practical Reinforcement Learning Coursera


About this course: Welcome to the Reinforcement Learning course. Here you will find out about: - foundations of RL methods: value/policy iteration, q-learning, policy gradient, etc. --- with math & batteries included - using deep neural networks for RL tasks --- also known as "the hype train" - state of the art RL algorithms --- and how to apply duct tape to them for practical problems.

Fundamentals of Decision Trees in Machine Learning


A tree has many analogies in real life, and turns out that it has influenced a wide area of machine learning, covering both classification and regression. In decision analysis, a decision tree can be used to visually and explicitly represent decisions and decision making. If you're working towards an understanding of machine learning, it's important to know how to work with decision trees. This course covers the essentials of machine learning, including predictive analytics and working with decision trees. In this course, we'll explore several popular tree algorithms and learn how to use reverse engineering to identify specific variables.

Artificial Intelligence IV - Reinforcement Learning in Java


This course is about Reinforcement Learning. The first step is to talk about the mathematical background: we can use a Markov Decision Process as a model for reinforcement learning. We can solve the problem 3 ways: value-iteration, policy-iteration and Q-learning. Q-learning is a model free approach so it is state-of-the-art approach. It learns the optimal policy by interacting with the environment.

A Boosting Framework on Grounds of Online Learning

Neural Information Processing Systems

By exploiting the duality between boosting and online learning, we present a boosting framework which proves to be extremely powerful thanks to employing the vast knowledge available in the online learning area. Using this framework, we develop various algorithms to address multiple practically and theoretically interesting questions including sparse boosting, smooth-distribution boosting, agnostic learning and, as a by-product, some generalization to double-projection online learning algorithms. Papers published at the Neural Information Processing Systems Conference.

Artificial Intelligence: Reinforcement Learning in Python


BESTSELLER Created by Lazy Programmer Inc. English English [Auto-generated], Portuguese [Auto-generated], 1 more Comment Policy: Please write your comments according to the topic of this page posting. Comments containing a link will not be displayed before approval.