A Preliminary Study on Hyperparameter Configuration for Human Activity Recognition

arXiv.org Machine Learning

Human activity recognition (HAR) is a classification task that aims to classify human activities or predict human behavior by means of features extracted from sensors data. Typical HAR systems use wearable sensors and/or handheld and mobile devices with built-in sensing capabilities. Due to the widespread use of smartphones and to the inclusion of various sensors in all contemporary smartphones (e.g., accelerometers and gyroscopes), they are commonly used for extracting and collecting data from sensors and even for implementing HAR systems. When using mobile devices, e.g., smartphones, HAR systems need to deal with several constraints regarding battery, computation and memory. These constraints enforce the need of a system capable of managing its resources and maintain acceptable levels of classification accuracy. Moreover, several factors can influence activity recognition, such as classification models, sensors availability and size of data window for feature extraction, making stable accuracy a difficult task. In this paper, we present a semi-supervised classifier and a study regarding the influence of hyperparameter configuration in classification accuracy, depending on the user and the activities performed by each user. This study focuses on sensing data provided by the PAMAP2 dataset. Experimental results show that it is possible to maintain classification accuracy by adjusting hyperparameters, like window size and windows overlap factor, depending on user and activity performed. These experiments motivate the development of a system able to automatically adapt hyperparameter settings for the activity performed by each user.


Efficient Identification of Approximate Best Configuration of Training in Large Datasets

arXiv.org Machine Learning

A configuration of training refers to the combinations of feature engineering, learner, and its associated hyperparameters. Given a set of configurations and a large dataset randomly split into training and testing set, we study how to efficiently identify the best configuration with approximately the highest testing accuracy when trained from the training set. To guarantee small accuracy loss, we develop a solution using confidence interval (CI)-based progressive sampling and pruning strategy. Compared to using full data to find the exact best configuration, our solution achieves more than two orders of magnitude speedup, while the returned top configuration has identical or close test accuracy.


Symbolic Synthesis of Observability Requirements for Diagnosability

AAAI Conferences

Given a partially observable dynamic system and a diagnoser observing its evolution over time, diagnosability analysis formally verifies (at design time) if the diagnosis system will be able to infer (at runtime) the required information on the hidden part of the dynamic state. Diagnosability directly depends on the availability of observations, and can be guaranteed by different sets of sensors, possibly associated with different costs. In this paper, we tackle the problem of synthesizing observability requirements, i.e. automatically discovering a set of observations that is sufficient to guarantee diagnosability. We propose a novel approach with the following characterizing features. First, it fully covers a comprehensive formal framework for diagnosability analysis, and enables ranking configurations of observables in terms of cost, minimality, and diagnosability delay. Second, we propose two complementary algorithms for the synthesis of observables. Third, we describe an efficient implementation that takes full advantage of mature symbolic model checking techniques. The proposed approach is thoroughly evaluated over a comprehensive suite of benchmarks taken from the aerospace domain.


Learning meters of Arabic and English poems with Recurrent Neural Networks: a step forward for language understanding and synthesis

arXiv.org Machine Learning

Recognizing a piece of writing as a poem or prose is usually easy for the majority of people; however, only specialists can determine which meter a poem belongs to. In this paper, we build Recurrent Neural Network (RNN) models that can classify poems according to their meters from plain text. The input text is encoded at the character level and directly fed to the models without feature handcrafting. This is a step forward for machine understanding and synthesis of languages in general, and Arabic language in particular. Among the 16 poem meters of Arabic and the 4 meters of English the networks were able to correctly classify poem with an overall accuracy of 96.38\% and 82.31\% respectively. The poem datasets used to conduct this research were massive, over 1.5 million of verses, and were crawled from different nontechnical sources, almost Arabic and English literature sites, and in different heterogeneous and unstructured formats. These datasets are now made publicly available in clean, structured, and documented format for other future research. To the best of the authors' knowledge, this research is the first to address classifying poem meters in a machine learning approach, in general, and in RNN featureless based approach, in particular. In addition, the dataset is the first publicly available dataset ready for the purpose of future computational research.


Towards Active Event Recognition

AAAI Conferences

Directing robot attention to recognise activities and to anticipate events like goal-directed actions is a crucial skill for human-robot interaction. Unfortunately, issues like intrinsic time constraints, the spatially distributed nature of the entailed information sources, and the existence of a multitude of unobservable states affecting the system, like latent intentions, have long rendered achievement of such skills a rather elusive goal. The problem tests the limits of current attention control systems. It requires an integrated solution for tracking, exploration and recognition, which traditionally have been seen as separate problems in active vision.We propose a probabilistic generative framework based on a mixture of Kalman filters and information gain maximisation that uses predictions in both recognition and attention-control. This framework can efficiently use the observations of one element in a dynamic environment to provide information on other elements, and consequently enables guided exploration.Interestingly, the sensors-control policy, directly derived from first principles, represents the intuitive trade-off between finding the most discriminative clues and maintaining overall awareness.Experiments on a simulated humanoid robot observing a human executing goal-oriented actions demonstrated improvement on recognition time and precision over baseline systems.