Collaborating Authors

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.

Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI Artificial Intelligence

This is an integrative review that address the question, "What makes for a good explanation?" with reference to AI systems. Pertinent literatures are vast. Thus, this review is necessarily selective. That said, most of the key concepts and issues are expressed in this Report. The Report encapsulates the history of computer science efforts to create systems that explain and instruct (intelligent tutoring systems and expert systems). The Report expresses the explainability issues and challenges in modern AI, and presents capsule views of the leading psychological theories of explanation. Certain articles stand out by virtue of their particular relevance to XAI, and their methods, results, and key points are highlighted. It is recommended that AI/XAI researchers be encouraged to include in their research reports fuller details on their empirical or experimental methods, in the fashion of experimental psychology research reports: details on Participants, Instructions, Procedures, Tasks, Dependent Variables (operational definitions of the measures and metrics), Independent Variables (conditions), and Control Conditions.

Domain Knowledge Aided Explainable Artificial Intelligence for Intrusion Detection and Response Artificial Intelligence

Artificial Intelligence (AI) has become an integral part of modern-day security solutions for its capability of learning very complex functions and handling "Big Data". However, the lack of explainability and interpretability of successful AI models is a key stumbling block when trust in a model's prediction is critical. This leads to human intervention, which in turn results in a delayed response or decision. While there have been major advancements in the speed and performance of AI-based intrusion detection systems, the response is still at human speed when it comes to explaining and interpreting a specific prediction or decision. In this work, we infuse popular domain knowledge (i.e., CIA principles) in our model for better explainability and validate the approach on a network intrusion detection test case. Our experimental results suggest that the infusion of domain knowledge provides better explainability as well as a faster decision or response. In addition, the infused domain knowledge generalizes the model to work well with unknown attacks, as well as open the path to adapt to a large stream of network traffic from numerous IoT devices.

What is AI? Everything you need to know about Artificial Intelligence ZDNet


This ebook, based on the latest ZDNet / TechRepublic special feature, advises CXOs on how to approach AI and ML initiatives, figure out where the data science team fits in, and what algorithms to buy versus build. It depends who you ask. Back in the 1950s, the fathers of the field Minsky and McCarthy, described artificial intelligence as any task performed by a program or a machine that, if a human carried out the same activity, we would say the human had to apply intelligence to accomplish the task. That obviously is a fairly broad definition, which is why you will sometimes see arguments over whether something is truly AI or not. AI systems will typically demonstrate at least some of the following behaviors associated with human intelligence: planning, learning, reasoning, problem solving, knowledge representation, perception, motion, and manipulation and, to a lesser extent, social intelligence and creativity. AI is ubiquitous today, used to recommend what you should buy next online, to understand what you say to virtual assistants such as Amazon's Alexa and Apple's Siri, to recognise who and what is in a photo, to spot spam, or detect credit card fraud. AI might be a hot topic but you'll still need to justify those projects.

The Limits of Modern AI: A Story The Best Schools


The dream of thinking machines goes back centuries, at least to Gottfried Wilhelm Leibniz, in the 17th century. Leibniz (right) helped invent mechanical calculators, independently of Isaac Newton developed the integral calculus, and had a lifelong fascination with reducing thinking to calculation. His Mathesis Universalis was a vision of universal science made possible by a mathematical language more precise than natural languages, like English. The Limits of Modern AI: A Story In the 18th Century the Enlightenment philosopher and proto-psychologist Étienne Bonnot de Condillac imagined a statue outwardly appearing like a man and also with what he called "the inward organization." In an example of supreme armchair speculation, Condillac imagined pouring facts--bits of knowledge--into its head, wondering when intelligence would emerge. Condillac's musings drew inspiration from the early mechanical philosophy of Thomas Hobbes, who had famously declared that thinking was nothing but ...