Collaborating Authors

The Hanabi Challenge: A New Frontier for AI Research Machine Learning

From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay and imperfect information in a two to five player setting. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques capable of imbuing artificial agents with such theory of mind will not only be crucial for their success in Hanabi, but also in broader collaborative efforts, and especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.

Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning Machine Learning

The game of Chinese Checkers is a challenging traditional board game of perfect information that differs from other traditional games in two main aspects: first, unlike Chess, all checkers remain indefinitely in the game and hence the branching factor of the search tree does not decrease as the game progresses; second, unlike Go, there are also no upper bounds on the depth of the search tree since repetitions and backward movements are allowed. Therefore, even in a restricted game instance, the state-space of the game can still be unbounded, making it challenging for a computer program to excel. In this work, we present an approach that effectively combines the use of heuristics, Monte Carlo tree search, and deep reinforcement learning for building a Chinese Checkers agent without the use of any human game-play data. Experiment results show that our agent is competent under different scenarios and reaches the level of experienced human players.

Standing on the shoulders of giants


When you think of AI or machine learning you may draw up images of AlphaZero or even some science fiction reference such as HAL-9000 from 2001: A Space Odyssey. However, the true forefather, who set the stage for all of this, was the great Arthur Samuel. Samuel was a computer scientist, visionary, and pioneer, who wrote the first checkers program for the IBM 701 in the early 1950s. His program, "Samuel's Checkers Program", was first shown to the general public on TV on February 24th, 1956, and the impact was so powerful that IBM stock went up 15 points overnight (a huge jump at that time). This program also helped set the stage for all the modern chess programs we have come to know so well, with features like look-ahead, an evaluation function, and a mini-max search that he would later develop into alpha-beta pruning.

Reinforcement Renaissance

Communications of the ACM

Based in San Francisco, Marina Krakovsky is the author of The Middleman Economy: How Brokers, Agents, Dealers, and Everyday Matchmakers Create Value and Profit (Palgrave Macmillan, 2015). Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from or fax (212) 869-0481. The Digital Library is published by the Association for Computing Machinery.

The Games That AI Won


Some tasks that AI does are actually not impressive. Think about your camera recognizing and auto-focusing on faces in pictures. That technology has been around since 2001, and it doesn't tend to excite people. Well, because you can do that too, you can focus your eyes on someone's face very easily. In fact, it's so easy you don't even know how you do it.