Collaborating Authors

Robust Semi-Supervised Learning when Labels are Missing at Random Machine Learning

Semi-supervised learning methods are motivated by the relative paucity of labeled data and aim to utilize large sources of unlabeled data to improve predictive tasks. It has been noted, however, such improvements are not guaranteed in general in some cases the unlabeled data impairs the performance. A fundamental source of error comes from restrictive assumptions about the unlabeled features. In this paper, we develop a semi-supervised learning approach that relaxes such assumptions and is robust with respect to labels missing at random. The approach ensures that uncertainty about the classes is propagated to the unlabeled features in a robust manner. It is applicable using any generative model with associated learning algorithm. We illustrate the approach using both standard synthetic data examples and the MNIST data with unlabeled adversarial examples.

The Pessimistic Limits of Margin-based Losses in Semi-supervised Learning Machine Learning

We show that for linear classifiers defined by convex margin-based surrogate losses that are monotonically decreasing, it is impossible to construct any semi-supervised approach that is able to guarantee an improvement over the supervised classifier measured by this surrogate loss. For non-monotonically decreasing loss functions, we demonstrate safe improvements are possible.

Implicitly Constrained Semi-Supervised Least Squares Classification Machine Learning

We introduce a novel semi-supervised version of the least squares classifier. This implicitly constrained least squares (ICLS) classifier minimizes the squared loss on the labeled data among the set of parameters implied by all possible labelings of the unlabeled data. Unlike other discriminative semi-supervised methods, our approach does not introduce explicit additional assumptions into the objective function, but leverages implicit assumptions already present in the choice of the supervised least squares classifier. We show this approach can be formulated as a quadratic programming problem and its solution can be found using a simple gradient descent procedure. We prove that, in a certain way, our method never leads to performance worse than the supervised classifier. Experimental results corroborate this theoretical result in the multidimensional case on benchmark datasets, also in terms of the error rate.

FedCon: A Contrastive Framework for Federated Semi-Supervised Learning


Federated Semi-Supervised Learning (FedSSL) has gained rising attention from both academic and industrial researchers, due to its unique characteristics of co-training machine learning models with isolated yet unlabeled data. Most existing FedSSL methods focus on the classical scenario, i.e, the labeled and unlabeled data are stored at the client side. However, in real world applications, client users may not provide labels without any incentive. Thus, the scenario of labels at the server side is more practical. Since unlabeled data and labeled data are decoupled, most existing FedSSL approaches may fail to deal with such a scenario. To overcome this problem, in this paper, we propose FedCon, which introduces a new learning paradigm, i.e., contractive learning, to FedSSL.

Semi-supervised Learning with Weakly-Related Unlabeled Data : Towards Better Text Categorization

Neural Information Processing Systems

The cluster assumption is exploited by most semi-supervised learning (SSL) methods. However, if the unlabeled data is merely weakly related to the target classes, it becomes questionable whether driving the decision boundary to the low density regions of the unlabeled data will help the classification. In such case, the cluster assumption may not be valid; and consequently how to leverage this type of unlabeled data to enhance the classification accuracy becomes a challenge. We introduce Semi-supervised Learning with Weakly-Related Unlabeled Data" (SSLW), an inductive method that builds upon the maximum-margin approach, towards a better usage of weakly-related unlabeled information. Although the SSLW could improve a wide range of classification tasks, in this paper, we focus on text categorization with a small training pool. The key assumption behind this work is that, even with different topics, the word usage patterns across different corpora tends to be consistent. To this end, SSLW estimates the optimal word-correlation matrix that is consistent with both the co-occurrence information derived from the weakly-related unlabeled documents and the labeled documents. For empirical evaluation, we present a direct comparison with a number of state-of-the-art methods for inductive semi-supervised learning and text categorization; and we show that SSLW results in a significant improvement in categorization accuracy, equipped with a small training set and an unlabeled resource that is weakly related to the test beds."