IBM Watson aligns with 16 health systems and imaging firms to apply cognitive computing to battle cancer, diabetes, heart disease

#artificialintelligence

IBM Watson Health has formed a medical imaging collaborative with more than 15 leading healthcare organizations. The goal: To take on some of the most deadly diseases. The collaborative, which includes health systems, academic medical centers, ambulatory radiology providers and imaging technology companies, aims to help doctors address breast, lung, and other cancers; diabetes; eye health; brain disease; and heart disease and related conditions, such as stroke. Watson will mine insights from what IBM calls previously invisible unstructured imaging data and combine it with a broad variety of data from other sources, such as data from electronic health records, radiology and pathology reports, lab results, doctors' progress notes, medical journals, clinical care guidelines and published outcomes studies. As the work of the collaborative evolves, Watson's rationale and insights will evolve, informed by the latest combined thinking of the participating organizations.


Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes

Neural Information Processing Systems

Predicated on the increasing abundance of electronic health records, we investigate the problem of inferring individualized treatment effects using observational data. Stemming from the potential outcomes model, we propose a novel multi-task learning framework in which factual and counterfactual outcomes are modeled as the outputs of a function in a vector-valued reproducing kernel Hilbert space (vvRKHS). We develop a nonparametric Bayesian method for learning the treatment effects using a multi-task Gaussian process (GP) with a linear coregionalization kernel as a prior over the vvRKHS. The Bayesian approach allows us to compute individualized measures of confidence in our estimates via pointwise credible intervals, which are crucial for realizing the full potential of precision medicine. The impact of selection bias is alleviated via a risk-based empirical Bayes method for adapting the multi-task GP prior, which jointly minimizes the empirical error in factual outcomes and the uncertainty in (unobserved) counterfactual outcomes. We conduct experiments on observational datasets for an interventional social program applied to premature infants, and a left ventricular assist device applied to cardiac patients wait-listed for a heart transplant. In both experiments, we show that our method significantly outperforms the state-of-the-art.


PAC-Bayes Learning of Conjunctions and Classification of Gene-Expression Data

Neural Information Processing Systems

We propose a "soft greedy" learning algorithm for building small conjunctions of simple threshold functions, called rays, defined on single real-valued attributes. We also propose a PAC-Bayes risk bound which is minimized for classifiers achieving a nontrivial tradeoff between sparsity (the number of rays used) and the magnitude ofthe separating margin of each ray. Finally, we test the soft greedy algorithm on four DNA micro-array data sets.


A Bayesian Finite Mixture Model with Variable Selection for Data with Mixed-type Variables

arXiv.org Machine Learning

Finite mixture model is an important branch of clustering methods and can be applied on data sets with mixed types of variables. However, challenges exist in its applications. First, it typically relies on the EM algorithm which could be sensitive to the choice of initial values. Second, biomarkers subject to limits of detection (LOD) are common to encounter in clinical data, which brings censored variables into finite mixture model. Additionally, researchers are recently getting more interest in variable importance due to the increasing number of variables that become available for clustering. To address these challenges, we propose a Bayesian finite mixture model to simultaneously conduct variable selection, account for biomarker LOD and obtain clustering results. We took a Bayesian approach to obtain parameter estimates and the cluster membership to bypass the limitation of the EM algorithm. To account for LOD, we added one more step in Gibbs sampling to iteratively fill in biomarker values below or above LODs. In addition, we put a spike-and-slab type of prior on each variable to obtain variable importance. Simulations across various scenarios were conducted to examine the performance of this method. Real data application on electronic health records was also conducted.


Priors over Recurrent Continuous Time Processes

Neural Information Processing Systems

We introduce the Gamma-Exponential Process (GEP), a prior over a large family ofcontinuous time stochastic processes. A hierarchical version of this prior (HGEP; the Hierarchical GEP) yields a useful model for analyzing complex time series. Models based on HGEPs display many attractive properties: conjugacy, exchangeability and closed-form predictive distribution for the waiting times, and exact Gibbs updates for the time scale parameters. After establishing these properties, weshow how posterior inference can be carried efficiently using Particle MCMC methods [1]. This yields a MCMC algorithm that can resample entire sequences atomicallywhile avoiding the complications of introducing slice and stick auxiliary variables of the beam sampler [2]. We applied our model to the problem of estimating the disease progression in multiple sclerosis [3], and to RNA evolutionary modeling[4]. In both domains, we found that our model outperformed the standard rate matrix estimation approach.