Collaborating Authors

CausalML: Python Package for Causal Machine Learning Machine Learning

CausalML is a Python implementation of algorithms related to causal inference and machine learning. Algorithms combining causal inference and machine learning have been a trending topic in recent years. This package tries to bridge the gap between theoretical work on methodology and practical applications by making a collection of methods in this field available in Python. This paper introduces the key concepts, scope, and use cases of this package.

This Python Package 'Causal ML' Provides a Suite of Uplift Modeling and Causal Inference with Machine Learning MarkTechPost


'Causal ML' is a Python package that deals with uplift modeling, which estimates heterogeneous treatment effect (HTE) and causal inference methods with the help of machine learning (ML) algorithms based on research. It uses a standard interface that allows users to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from data (experimental or observational). 'Casual ML' package provides eight cutting edge uplift modeling algorithms combining causal inference & ML. 'Essentially, it estimates the causal impact of intervention T on outcome Y for users with observed features X, without strong assumptions on the model form'. As mentioned earlier, the package deals with uplift modeling, which estimates heterogeneous treatment effect (HTE), therefore starting with general causal inference, then learning about HTE and uplift modeling would definitely help.

Process Mining Meets Causal Machine Learning: Discovering Causal Rules from Event Logs Machine Learning

This paper proposes an approach to analyze an event log of a business process in order to generate case-level recommendations of treatments that maximize the probability of a given outcome. Users classify the attributes in the event log into controllable and non-controllable, where the former correspond to attributes that can be altered during an execution of the process (the possible treatments). We use an action rule mining technique to identify treatments that co-occur with the outcome under some conditions. Since action rules are generated based on correlation rather than causation, we then use a causal machine learning technique, specifically uplift trees, to discover subgroups of cases for which a treatment has a high causal effect on the outcome after adjusting for confounding variables. We test the relevance of this approach using an event log of a loan application process and compare our findings with recommendations manually produced by process mining experts.

A unified survey on treatment effect heterogeneity modeling and uplift modeling Machine Learning

A central question in many fields of scientific research is to determine how an outcome would be affected by an action, or to measure the effect of an action (a.k.a treatment effect). In recent years, a need for estimating the heterogeneous treatment effects conditioning on the different characteristics of individuals has emerged from research fields such as personalized healthcare, social science, and online marketing. To meet the need, researchers and practitioners from different communities have developed algorithms by taking the treatment effect heterogeneity modeling approach and the uplift modeling approach, respectively. In this paper, we provide a unified survey of these two seemingly disconnected yet closely related approaches under the potential outcome framework. We then provide a structured survey of existing methods by emphasizing on their inherent connections with a set of unified notations to make comparisons of the different methods easy. We then review the main applications of the surveyed methods in personalized marketing, personalized medicine, and social studies. Finally, we summarize the existing software packages and present discussions based on the use of methods on synthetic, semi-synthetic and real world data sets and provide some general guidelines for choosing methods.

Feature Selection Methods for Uplift Modeling Machine Learning

Uplift modeling is a predictive modeling technique that estimates the user-level incremental effect of a treatment using machine learning models. It is often used for targeting promotions and advertisements, as well as for the personalization of product offerings. In these applications, there are often hundreds of features available to build such models. Keeping all the features in a model can be costly and inefficient. Feature selection is an essential step in the modeling process for multiple reasons: improving the estimation accuracy by eliminating irrelevant features, accelerating model training and prediction speed, reducing the monitoring and maintenance workload for feature data pipeline, and providing better model interpretation and diagnostics capability. However, feature selection methods for uplift modeling have been rarely discussed in the literature. Although there are various feature selection methods for standard machine learning models, we will demonstrate that those methods are sub-optimal for solving the feature selection problem for uplift modeling. To address this problem, we introduce a set of feature selection methods designed specifically for uplift modeling, including both filter methods and embedded methods. To evaluate the effectiveness of the proposed feature selection methods, we use different uplift models and measure the accuracy of each model with a different number of selected features. We use both synthetic and real data to conduct these experiments. We also implemented the proposed filter methods in an open source Python package (CausalML).