Guo, Xiaojie, Wu, Lingfei, Zhao, Liang

Inspired by the tremendous success of deep generative models on generating continuous data like image and audio, in the most recent year, few deep graph generative models have been proposed to generate discrete data such as graphs. They are typically unconditioned generative models which has no control on modes of the graphs being generated. Differently, in this paper, we are interested in a new problem named \emph{Deep Graph Translation}: given an input graph, we want to infer a target graph based on their underlying (both global and local) translation mapping. Graph translation could be highly desirable in many applications such as disaster management and rare event forecasting, where the rare and abnormal graph patterns (e.g., traffic congestions and terrorism events) will be inferred prior to their occurrence even without historical data on the abnormal patterns for this graph (e.g., a road network or human contact network). To achieve this, we propose a novel Graph-Translation-Generative Adversarial Networks (GT-GAN) which will generate a graph translator from input to target graphs. GT-GAN consists of a graph translator where we propose new graph convolution and deconvolution layers to learn the global and local translation mapping. A new conditional graph discriminator has also been proposed to classify target graphs by conditioning on input graphs. Extensive experiments on multiple synthetic and real-world datasets demonstrate the effectiveness and scalability of the proposed GT-GAN.

Lindgren, Erik, Kocaoglu, Murat, Dimakis, Alexandros G., Vishwanath, Sriram

We consider the minimum cost intervention design problem: Given the essential graph of a causal graph and a cost to intervene on a variable, identify the set of interventions with minimum total cost that can learn any causal graph with the given essential graph. We first show that this problem is NP-hard. We then prove that we can achieve a constant factor approximation to this problem with a greedy algorithm. We then constrain the sparsity of each intervention. We develop an algorithm that returns an intervention design that is nearly optimal in terms of size for sparse graphs with sparse interventions and we discuss how to use it when there are costs on the vertices.

Chambers, America, Smyth, Padhraic, Steyvers, Mark

We present a generative probabilistic model for learning general graph structures, which we term concept graphs, from text. Concept graphs provide a visual summary of the thematic content of a collection of documents-a task that is difficult to accomplish using only keyword search. The proposed model can learn different types of concept graph structures and is capable of utilizing partial prior knowledge about graph structure as well as labeled documents. We describe a generative model that is based on a stick-breaking process for graphs, and a Markov Chain Monte Carlo inference procedure. Experiments on simulated data show that the model can recover known graph structure when learning in both unsupervised and semi-supervised modes.

You, Jiaxuan, Liu, Bowen, Ying, Zhitao, Pande, Vijay, Leskovec, Jure

Generating novel graph structures that optimize given objectives while obeying some given underlying rules is fundamental for chemistry, biology and social science research. This is especially important in the task of molecular graph generation, whose goal is to discover novel molecules with desired properties such as drug-likeness and synthetic accessibility, while obeying physical laws such as chemical valency. However, designing models that finds molecules that optimize desired properties while incorporating highly complex and non-differentiable rules remains to be a challenging task. Here we propose Graph Convolutional Policy Network (GCPN), a general graph convolutional network based model for goal-directed graph generation through reinforcement learning. The model is trained to optimize domain-specific rewards and adversarial loss through policy gradient, and acts in an environment that incorporates domain-specific rules.

Fiori, Marcelo, Sprechmann, Pablo, Vogelstein, Joshua, Muse, Pablo, Sapiro, Guillermo

Graph matching is a challenging problem with very important applications in a wide range of fields, from image and video analysis to biological and biomedical problems. We propose a robust graph matching algorithm inspired in sparsity-related techniques. We cast the problem, resembling group or collaborative sparsity formulations, as a non-smooth convex optimization problem that can be efficiently solved using augmented Lagrangian techniques. The method can deal with weighted or unweighted graphs, as well as multimodal data, where different graphs represent different types of data. The proposed approach is also naturally integrated with collaborative graph inference techniques, solving general network inference problems where the observed variables, possibly coming from different modalities, are not in correspondence.