Goto

Collaborating Authors

Demand Forecasting using Long Short-Term Memory Neural Networks

arXiv.org Machine Learning

In this paper we investigate to what extent long short-term memory neural networks (LSTMs) are suitable for demand forecasting in the e-grocery retail sector. For this purpose, univariate as well as multivariate LSTM-based models were developed and tested for 100 fast-moving consumer goods in the context of a master's thesis. On average, the developed models showed better results for food products than the comparative models from both statistical and machine learning families. Solely in the area of beverages random forest and linear regression achieved slightly better results. This outcome suggests that LSTMs can be used for demand forecasting at product level. The performance of the models presented here goes beyond the current state of research, as can be seen from the evaluations based on a data set that unfortunately has not been publicly available to date.


A Multi-Phase Approach for Product Hierarchy Forecasting in Supply Chain Management: Application to MonarchFx Inc

arXiv.org Machine Learning

Hierarchical time series demands exist in many industries and are often associated with the product, time frame, or geographic aggregations. Traditionally, these hierarchies have been forecasted using top-down, bottom-up, or middle-out approaches. The question we aim to answer is how to utilize child-level forecasts to improve parent-level forecasts in a hierarchical supply chain. Improved forecasts can be used to considerably reduce logistics costs, especially in e-commerce. We propose a novel multi-phase hierarchical (MPH) approach. Our method involves forecasting each series in the hierarchy independently using machine learning models, then combining all forecasts to allow a second phase model estimation at the parent level. Sales data from MonarchFx Inc. (a logistics solutions provider) is used to evaluate our approach and compare it to bottom-up and top-down methods. Our results demonstrate an 82-90% improvement in forecast accuracy using the proposed approach. Using the proposed method, supply chain planners can derive more accurate forecasting models to exploit the benefit of multivariate data.


Demand Forecasting Methods: Using Machine Learning and Predictive Analytics to See the Future of…

#artificialintelligence

What is the top pain point for business executives? Gartner, the world's largest IT research firm, gives a clear answer: demand volatility. Too many factors from weather fluctuations to posts by social media influencers -- impact buyers, causing them to frequently change their minds. Worse still, things reshaping customer intentions happen quite unexpectedly. Think, for instance, of the teenage climate activist Greta Thunberg.


AWS Announces General Availability of Amazon Forecast HostReview.com

#artificialintelligence

Amazon uses forecasting to make sure that the right product is in the right place at the right time by predicting demand for hundreds of millions of products every day. Amazon Forecast uses this same technology to build precise forecasts for virtually any business condition, including product demand and sales, infrastructure requirements, energy needs, and staffing levels – with predictions that are up to 50% more accurate than traditional methods. Amazon Forecast is easy to use and requires no machine learning experience. The service automatically provisions the necessary infrastructure, processes data, and builds custom, private machine learning models that are hosted on AWS and ready to make predictions. To get started with Amazon Forecast, visit https://aws.amazon.com/forecast/.


How to Combine Different Methods for A 24-times Faster Time Series Prediction

#artificialintelligence

Today, businesses need to be able to predict demand and trends to stay in line with any sudden market changes and economy swings. This is exactly where forecasting tools, powered by Data Science, come into play, enabling organizations to successfully deal with strategic and capacity planning. Smart forecasting techniques can be used to reduce any possible risks and assist in making well-informed decisions. One of our customers, an enterprise from the Middle East, needed to predict their market demand for the upcoming twelve weeks. They required a market forecast to help them set their short-term objectives, such as production strategy, as well as assist in capacity planning and price control.